PAGE  
262
University of California, Davis

DICOM Network Transport Protocol
University of California, Davis

Rev. 11.22.1995.0001 - Beta

Forward
27


Class Hierarchy
30


How does one use this DICOM library?
31


File Names/Extensions
34


Part 2: PDU_Service (DICOM Chapters 8,10)
36


Buffer Class
37


BOOL SetBreakSize( UINT )
37


BOOL SetIncomingEndian( UINT )
37


BOOL SetOutgoingEndian ( UINT )
37


>> <<
37


BOOL Flush ()
37


BOOL Flush ( UINT )
37


BOOL Kill(UINT)
38


BOOL Read(BYTE *, UINT)
38


BOOL Write(BYTE *, UINT)
38


virtual INT  ReadBinary(BYTE *, UINT) = 0
38


virtual BOOL  SendBinary(BYTE *, UINT) = 0
38


LinkedBuffer Class
39


BOOL Fill(Buffer &, UINT)
39


BOOL Flush(Buffer &, UINT)
39


Array<DATATYPE> Template Class
40


DATATYPE & Add(DATATYPE &)
40


DATATYPE & Get( UINT )
40


DATATYPE & RemoveAt( UINT )
40


DATATYPE & operator []
40


UINT GetSize()
40


PQueue<DATATYPE> Template Class
41


DATATYPE & Push( DATAYPE & )
41


DATATYPE & Pop( DATATYPE &)
41


PQueuePtr<DATATYPE> Template Class
42


DATATYPE & Push ( DATATYPE & )
42


DATATYPE & Pop ( DATATYPE & )
42


Special Note:
42


Socket Class
43


BOOL Open(char *dest, char *port)
43


BOOL Close()
43


INT ReadBinary(BYTE *, UINT)
43


BOOL SendBinary(BYTE *, UINT)
43


BOOL Listen(char *port)
43


BOOL Accept()
43


AAssociateRQ Class
45


ApplicationContext AppContext
45


Array<PresentationContext> PresContexts
45


UserInformation UserInfo
45


AAssociateRQ ()
45


AAssociateRQ ( BYTE *, BYTE * )
45


~AAssociateRQ ()
45


void SetCalledApTitle ( BYTE * )
46


void SetCallingApTitle ( BYTE * )
46


void SetApplicationContext ( ApplicationContext & )
46


void AddPresentationContext ( PresentationContext & )
46


void SetUserInformation ( UserInformation & )
46


BOOL Write ( Buffer & )
46


BOOL Read ( Buffer & )
46


BOOL ReadDynamic ( Buffer & )
47


UINT32 Size()
47


AAssociateAC Class
48


BYTE CalledApTitle[16]
48


BYTE CallingApTitle[16]
48


ApplicationContext AppContext
48


Array<PresentationContextAccept> PresContextAccepts
48


UserInformation UserInfo
49


AAssociateAC ()
49


AAssociateAC ( BYTE *, BYTE * )
49


~AAssociateAC ()
49


void SetCalledApTitle ( BYTE * )
49


void SetCallingApTitle ( BYTE * )
49


void SetApplicationContext ( ApplicationContext & )
49


void AddPresentationContextAccept ( PresentationContextAccept & )
49


void SetUserInformation ( UserInformation & )
49


BOOL Write ( Buffer & )
50


BOOL Read ( Buffer & )
50


BOOL ReadDynamic ( Buffer & )
50


UINT32 Size()
50


AAssociateRJ Class
51


BYTE Result
51


BYTE Source
51


BYTE Reason
51


AAssociateRJ ()
52


AAssociateRJ (BYTE, BYTE, BYTE)
52


~AAssociateRJ ()
52


BOOL Write ( Buffer & )
52


BOOL Read ( Buffer & )
52


BOOL ReadDynamic ( Buffer & )
52


UINT32 Size()
52


AReleaseRQ Class
53


AReleaseRQ ()
53


~AReleaseRQ ()
53


BOOL Write ( Buffer & )
53


BOOL Read ( Buffer & )
53


BOOL ReadDynamic ( Buffer & )
53


UINT32 Size()
54


AReleaseRP Class
55


AReleaseRP ()
55


~AReleaseRP ()
55


BOOL Write ( Buffer & )
55


BOOL Read ( Buffer & )
55


BOOL ReadDynamic ( Buffer & )
55


UINT32 Size()
56


AAbortRQ Class
57


BYTE Source
57


BYTE Reason
57


AAbortRQ ()
57


~AAbortRQ ()
57


BOOL Write ( Buffer & )
57


BOOL Read ( Buffer & )
57


BOOL ReadDynamic ( Buffer & )
58


UINT32 Size()
58


ApplicationContext Class
59


UID ApplicationContextName
59


ApplicationContext()
59


ApplicationContext (UID &)
59


ApplicationContext ( BYTE * )
59


~ApplicationContext ()
59


void Set(UID &)
59


void Set(BYTE *)
59


BOOL Write ( Buffer & )
59


BOOL Read ( Buffer & )
60


BOOL ReadDynamic ( Buffer & )
60


UINT32 Size()
60


AbstractSyntax Class
61


UID AbstractSyntaxName
61


AbstractSyntax()
61


AbstractSyntax (UID &)
61


AbstractSyntax ( BYTE * )
61


~AbstractSyntax ()
61


void Set(UID &)
61


void Set(BYTE *)
61


BOOL Write ( Buffer & )
61


BOOL Read ( Buffer & )
62


BOOL ReadDynamic ( Buffer & )
62


UINT32 Size()
62


TransferSyntax Class
63


UID TransferSyntaxName
63


UINT EndianType
63


TransferSyntax()
63


TransferSyntax (UID &)
63


TransferSyntax ( BYTE * )
63


~TransferSyntax ()
63


void Set(UID &)
63


void Set(BYTE *)
64


BOOL Write ( Buffer & )
64


BOOL Read ( Buffer & )
64


BOOL ReadDynamic ( Buffer & )
64


UINT32 Size()
64


ImplementationClass Class
65


UID ImplementationClassName
65


ImplementationClass()
65


ImplementationClass (UID &)
65


ImplementationClass ( BYTE * )
65


~ImplementationClass ()
65


void Set(UID &)
65


void Set(BYTE *)
65


BOOL Write ( Buffer & )
65


BOOL Read ( Buffer & )
66


BOOL ReadDynamic ( Buffer & )
66


UINT32 Size()
66


ImplementationVersion Class
67


UID Version
67


ImplementationVersion()
67


ImplementationVersion (UID &)
67


ImplementationVersion ( BYTE * )
67


~ImplementationVersion ()
67


void Set(UID &)
67


void Set(BYTE *)
67


BOOL Write ( Buffer & )
67


BOOL Read ( Buffer & )
68


BOOL ReadDynamic ( Buffer & )
68


UINT32 Size()
68


SCPSCURoleSelect Class
69


UID uid
69


BYTE SCURole
69


BYTE SCPRole
69


SCPSCURoleSelect()
69


~SCPSCURoleSelect()
69


BOOL Write ( Buffer & )
69


BOOL Read ( Buffer & )
69


BOOL ReadDynamic ( Buffer & )
70


UINT32 Size()
70


MaximumSubLength Class
71


MaximumSubLength()
71


MaximumSubLength (UINT32)
71


~MaximumSubLength ()
71


void Set(UINT32)
71


UINT32 Get()
71


BOOL Write ( Buffer & )
71


BOOL Read ( Buffer & )
72


BOOL ReadDynamic ( Buffer & )
72


UINT32 Size()
72


UserInformation Class
73


UINT32 Baggage
73


MaximumSubLength MaxSubLength
73


ImplementationClass ImpClass
73


ImplementationVerision ImpVersion
73


UserInformation ()
73


~UserInformation ()
74


void SetMax(MaximumSubLength &)
74


UINT32 GetMax ()
74


BOOL Write ( Buffer & )
74


BOOL Read ( Buffer & )
74


BOOL ReadDynamic ( Buffer & )
74


UINT32 Size()
74


PresentationContext Class
75


AbstractSyntax AbsSyntax
75


Array < TransferSyntax > TrnSyntax
75


PresentationContext()
75


PresentationContext ( AbstractSyntax &, TransferSyntax & )
75


~PresentationContext()
75


void SetAbstraxtSyntax ( AbstractSyntax & )
75


void AddTransferSyntax ( TransferSyntax & )
75


BOOL Write ( Buffer & )
76


BOOL Read ( Buffer & )
76


BOOL ReadDynamic ( Buffer & )
76


UINT32 Size()
76


PresentationContextAccept Class
77


TransferSyntax TrnSyntax
77


PresentationContextAccept()
77


PresentationContextAccept ( TransferSyntax & )
77


~PresentationContextAccept()
77


void SetTransferSyntax ( TransferSyntax & )
77


void SetResult (BYTE)
77


BYTE GetResult ()
77


BOOL Write ( Buffer & )
78


BOOL Read ( Buffer & )
78


BOOL ReadDynamic ( Buffer & )
78


UINT32 Size()
78


UID Class
79


UID ()
79


void Set(BYTE *)
79


void Set(UID &)
79


void Set(char *)
79


=
79


BYTE *GetBuffer ( UINT )
79


void SetLength ( UINT )
79


UINT GetSize ()
79


==
79


PDataTF Class
80


LinkedBuffer VRBuffer
80


BOOL Write ( Buffer & )
80


BOOL ReadDynamic ( Buffer & )
80


PDU_Service Class
81


BOOL SaveDICOMDataObject (
81


char *filename,
81


UINT Format,
81


DICOMDataObject *)
81


DICOMDataObject *LoadDICOMDataObject(char *filename)
81


BOOL ClearAbstractSyntaxs()
82


BOOL AddAbstractSyntax(UID &)
82


BOOL SetApplicationContext(UID &)
82


BOOL SetLocalAddress(BYTE *)
82


BOOL SetRemoteAddress(BYTE *)
82


BOOL Connect(BYTE *, BYTE *)
82


BOOL Close()
82


BOOL Listen(BYTE *)
82


BOOL Multiplex(int)
82


BOOL Read(DICOMObject *)
83


BOOL Write(DICOMCommandObject *)
83


BOOL Write(DICOMDataObject *)
83


virtual BOOL CanYouHandleTransferSyntax(TransferSyntax &)
83


virtual BOOL ShouldIAcceptRemoteApTitle(BYTE *)
83


virtual BOOL ShouldIAcceptLocalApTitle(BYTE *)
83


virtual BOOL ShouldIAcceptApplicationContext(ApplicationContext    &)
83


virtual BOOL ShouldIAcceptPresentationContext       (PresentationContext &, PresentationContextAccept &)
83


virtual BOOL ShouldIAcceptAbstractSyntax(AbstractSyntax &)
83


virtual BOOL AddTransferSyntaxs(PresentationContext &)
84


virtual BOOL GetImplementationClass(ImplementationClass &)
84


virtual BOOL GetImplementationVersion(ImplementationVersion &)
84


virtual BOOL ParseRawVRIntoDCM (         BYTE,  LinkedBuffer &, DICOMObject *)
84


virtual BYTE ParseDCMIntoRawVR(DICOMObject *, LinkedBuffer &)
84


BYTE GetPresentationContextID(UID &)
84


BOOL GetTransferSyntaxUID(BYTE, UID &)
84


virtual BOOL Implicit_ParseRawVRIntoDCM (       LinkedBuffer &, DICOMObject *);
85


virtual BOOL Implicit_ParseDCMIntoRawVR (       DICOMObject *, LinkedBuffer &);
85


virtual BOOL ImplicitLittleEndian_ParseRawVRIntoDCM (     LinkedBuffer &, DICOMObject *);
85


virtual BOOL ImplicitLittleEndian_ParseDCMIntoRawVR(     DICOMObject *, LinkedBuffer &);
85


virtual BOOL Explicit_ParseRawVRIntoDCM(       LinkedBuffer &, DICOMObject *);
85


virtual BOOL Explicit_ParseDCMIntoRawVR(       DICOMObject *, LinkedBuffer &);
85


virtual BOOL ExplicitLittleEndian_ParseRawVRIntoDCM(     LinkedBuffer &, DICOMObject *);
85


virtual BOOL ExplicitLittleEndian_ParseDCMIntoRawVR(     DICOMObject *, LinkedBuffer &);
85


virtual BOOL ExplicitBigEndian_ParseRawVRIntoDCM(     LinkedBuffer &, DICOMObject *);
85


virtual BOOL ExplicitBigEndian_ParseDCMIntoRawVR(     DICOMObject *, LinkedBuffer &);
85


virtual BOOL Dynamic_ParseRawVRIntoDCM(      LinkedBuffer &, DICOMObject *, UINT StartMode);
85


virtual BOOL Dynamic_ParseDCMIntoRawVR(      DICOMObject *, LinkedBuffer &, UINT StartMode);
85


CheckedPDU_Service Class
86


CheckedPDU_Service ( char *filename)
87


InitializeFrom(char *filename)
87


ReleaseMemory()
87


Part 3: DICOM Objects
88


Introduction
89


VR Value Representation
89


IOD Information Object Definition
89


DICOMCommandObject
90


DICOMDataObject
90


Sequence Objects
91


VR Class
93


UINT16 Group
93


UINT16 Element
93


UINT32 Length
93


void *Data
93


BOOL ReleaseMemory
93


void *SQObjectArray
93


UINT16 TypeCode
93


VR ( UINT16, UINT16, UINT32, BOOL )
94


VR ( UINT16, UINT16, UINT32, void * )
94


VR ( UINT16, UINT16, UINT32, void *, BOOL )
94


VR ()
94


~VR()
94


>
94


<
94


==
94


BOOL Reset()
94


BOOL SetIf(VR *vr)
95


BOOL Morph(DICOMObject *)
95


DICOMObject Class
96


UINT32 Length
96


BOOL Push ( VR * )
96


BOOL Push ( DICOMObject * )
96


VR *Pop ()
96


LE_UINT16 GetUINT16 ( UINT16, UINT16 )
96


VR *GetVR ( UINT16, UINT16 )
96


BOOL  Reset()
96


DICOMCommandObject Class
97


See DICOMObject Class
97


DICOMDataObject Class
98


See DICOMObject Class
98


VR_AE Class
99


UINT16 Group
99


UINT16 Element
99


UINT32 Length
99


void *Data
99


BOOL ReleaseMemory
99


void *SQObjectArray
99


UINT16 TypeCode
99


VR_AE ( UINT16, UINT16, UINT32, BOOL )
100


VR_AE ( UINT16, UINT16, UINT32, void * )
100


VR_AE ( UINT16, UINT16, UINT32, void *, BOOL )
100


VR_AE ()
100


~VR_AE()
100


>
100


<
100


==
100


BOOL Reset()
100


BOOL SetIf(VR *vr)
100


BOOL Morph(DICOMObject *)
101


BOOL Set(char *)
101


BOOL Get(char *)
101


BOOL Set(UINT, char *)
101


BOOL Get(UINT, char *)
101


UINT16 GetTypeCode ()
101


UINT32 GetSetSize ()
101


VR_AS Class
102


UINT16 Group
102


UINT16 Element
102


UINT32 Length
102


void *Data
102


BOOL ReleaseMemory
102


void *SQObjectArray
102


UINT16 TypeCode
102


VR_AS ( UINT16, UINT16, UINT32, BOOL )
103


VR_AS ( UINT16, UINT16, UINT32, void * )
103


VR_AS ( UINT16, UINT16, UINT32, void *, BOOL )
103


VR_AS ()
103


~VR_AS()
103


>
103


<
103


==
103


BOOL Reset()
103


BOOL SetIf(VR *vr)
103


BOOL Morph(DICOMObject *)
104


BOOL Set(char *)
104


BOOL Get(char *)
104


BOOL VMSet(UINT, char *)
104


BOOL VMGet(UINT, char *)
104


UINT16 GetTypeCode ()
104


UINT32 GetSetSize ()
104


VR_AT Class
105


UINT16 Group
105


UINT16 Element
105


UINT32 Length
105


void *Data
105


BOOL ReleaseMemory
105


void *SQObjectArray
105


UINT16 TypeCode
105


VR_AT ( UINT16, UINT16, UINT32, BOOL )
106


VR_AT ( UINT16, UINT16, UINT32, void * )
106


VR_AT ( UINT16, UINT16, UINT32, void *, BOOL )
106


VR_AT ()
106


~VR_AT()
106


>
106


<
106


==
106


BOOL Reset()
106


BOOL SetIf(VR *vr)
106


BOOL Morph(DICOMObject *)
107


BOOL Set(void *)
107


BOOL Get(void *)
107


BOOL VMSet(UINT, void *)
107


BOOL VMGet(UINT, void *)
107


UINT16 GetTypeCode ()
107


UINT32 GetSetSize ()
107


VR_CS Class
108


UINT16 Group
108


UINT16 Element
108


UINT32 Length
108


void *Data
108


BOOL ReleaseMemory
108


void *SQObjectArray
108


UINT16 TypeCode
108


VR_CS ( UINT16, UINT16, UINT32, BOOL )
109


VR_CS ( UINT16, UINT16, UINT32, void * )
109


VR_CS ( UINT16, UINT16, UINT32, void *, BOOL )
109


VR_CS ()
109


~VR_CS()
109


>
109


<
109


==
109


BOOL Reset()
109


BOOL SetIf(VR *vr)
109


BOOL Morph(DICOMObject *)
110


BOOL Set(char *)
110


BOOL Get(char *)
110


BOOL VMSet(UINT, char *)
110


BOOL VMGet(UINT, char *)
110


UINT16 GetTypeCode ()
110


UINT32 GetSetSize ()
110


VR_DA Class
111


UINT16 Group
111


UINT16 Element
111


UINT32 Length
111


void *Data
111


BOOL ReleaseMemory
111


void *SQObjectArray
111


UINT16 TypeCode
111


VR_DA ( UINT16, UINT16, UINT32, BOOL )
112


VR_DA ( UINT16, UINT16, UINT32, void * )
112


VR_DA ( UINT16, UINT16, UINT32, void *, BOOL )
112


VR_DA ()
112


~VR_DA()
112


>
112


<
112


==
112


BOOL Reset()
112


BOOL SetIf(VR *vr)
113


BOOL Morph(DICOMObject *)
113


BOOL Set(char *)
113


BOOL Get(char *)
113


BOOL VMSet(UINT, char *)
113


BOOL VMGet(UINT, char *)
113


UINT16 GetTypeCode ()
113


UINT32 GetSetSize ()
113


VR_DS Class
114


UINT16 Group
114


UINT16 Element
114


UINT32 Length
114


void *Data
114


BOOL ReleaseMemory
114


void *SQObjectArray
114


UINT16 TypeCode
114


VR_DS ( UINT16, UINT16, UINT32, BOOL )
115


VR_DS ( UINT16, UINT16, UINT32, void * )
115


VR_DS ( UINT16, UINT16, UINT32, void *, BOOL )
115


VR_DS ()
115


~VR_DS()
115


>
115


<
115


==
115


BOOL Reset()
115


BOOL SetIf(VR *vr)
115


BOOL Morph(DICOMObject *)
116


BOOL Set(char *)
116


BOOL Get(char *)
116


BOOL VMSet(UINT, char *)
116


BOOL VMGet(UINT, char *)
116


UINT16 GetTypeCode ()
116


UINT32 GetSetSize ()
116


VR_DT Class
117


UINT16 Group
117


UINT16 Element
117


UINT32 Length
117


void *Data
117


BOOL ReleaseMemory
117


void *SQObjectArray
117


UINT16 TypeCode
117


VR_DT ( UINT16, UINT16, UINT32, BOOL )
118


VR_DT ( UINT16, UINT16, UINT32, void * )
118


VR_DT ( UINT16, UINT16, UINT32, void *, BOOL )
118


VR_DT ()
118


~VR_DT()
118


>
118


<
118


==
118


BOOL Reset()
118


BOOL SetIf(VR *vr)
118


BOOL Morph(DICOMObject *)
119


BOOL Set(char *)
119


BOOL Get(char *)
119


BOOL VMSet(UINT, char *)
119


BOOL VMGet(UINT, char *)
119


UINT16 GetTypeCode ()
119


UINT32 GetSetSize ()
119


VR_FL Class
120


UINT16 Group
120


UINT16 Element
120


UINT32 Length
120


void *Data
120


BOOL ReleaseMemory
120


void *SQObjectArray
120


UINT16 TypeCode
120


VR_FL ( UINT16, UINT16, UINT32, BOOL )
121


VR_FL ( UINT16, UINT16, UINT32, void * )
121


VR_FL ( UINT16, UINT16, UINT32, void *, BOOL )
121


VR_FL ()
121


~VR_FL()
121


>
121


<
121


==
121


BOOL Reset()
121


BOOL SetIf(VR *vr)
122


BOOL Morph(DICOMObject *)
122


BOOL Set(void *)
122


BOOL Get(void *)
122


BOOL VMSet(UINT, void *)
122


BOOL VMGet(UINT, void *)
122


UINT16 GetTypeCode ()
122


UINT32 GetSetSize ()
122


VR_FD Class
123


UINT16 Group
123


UINT16 Element
123


UINT32 Length
123


void *Data
123


BOOL ReleaseMemory
123


void *SQObjectArray
123


UINT16 TypeCode
123


VR_FD ( UINT16, UINT16, UINT32, BOOL )
124


VR_FD ( UINT16, UINT16, UINT32, void * )
124


VR_FD ( UINT16, UINT16, UINT32, void *, BOOL )
124


VR_FD ()
124


~VR_FD()
124


>
124


<
124


==
124


BOOL Reset()
124


BOOL SetIf(VR *vr)
125


BOOL Morph(DICOMObject *)
125


BOOL Set(void *)
125


BOOL Get(void *)
125


BOOL VMSet(UINT, void *)
125


BOOL VMGet(UINT, void *)
125


UINT16 GetTypeCode ()
125


UINT32 GetSetSize ()
125


VR_IS Class
126


UINT16 Group
126


UINT16 Element
126


UINT32 Length
126


void *Data
126


BOOL ReleaseMemory
126


void *SQObjectArray
126


UINT16 TypeCode
126


VR_IS ( UINT16, UINT16, UINT32, BOOL )
127


VR_IS ( UINT16, UINT16, UINT32, void * )
127


VR_IS ( UINT16, UINT16, UINT32, void *, BOOL )
127


VR_IS ()
127


~VR_IS()
127


>
127


<
127


==
127


BOOL Reset()
127


BOOL SetIf(VR *vr)
127


BOOL Morph(DICOMObject *)
128


BOOL Set(char *)
128


BOOL Get(char *)
128


BOOL VMSet(UINT, char *)
128


BOOL VMGet(UINT, char *)
128


UINT16 GetTypeCode ()
128


UINT32 GetSetSize ()
128


VR_LO Class
129


UINT16 Group
129


UINT16 Element
129


UINT32 Length
129


void *Data
129


BOOL ReleaseMemory
129


void *SQObjectArray
129


UINT16 TypeCode
129


VR_LO ( UINT16, UINT16, UINT32, BOOL )
130


VR_LO ( UINT16, UINT16, UINT32, void * )
130


VR_LO ( UINT16, UINT16, UINT32, void *, BOOL )
130


VR_LO ()
130


~VR_LO()
130


>
130


<
130


==
130


BOOL Reset()
130


BOOL SetIf(VR *vr)
130


BOOL Morph(DICOMObject *)
131


BOOL Set(char *)
131


BOOL Get(char *)
131


BOOL VMSet(UINT, char *)
131


BOOL VMGet(UINT, char *)
131


UINT16 GetTypeCode ()
131


UINT32 GetSetSize ()
131


VR_LT Class
132


UINT16 Group
132


UINT16 Element
132


UINT32 Length
132


void *Data
132


BOOL ReleaseMemory
132


void *SQObjectArray
132


UINT16 TypeCode
132


VR_LT ( UINT16, UINT16, UINT32, BOOL )
133


VR_LT ( UINT16, UINT16, UINT32, void * )
133


VR_LT ( UINT16, UINT16, UINT32, void *, BOOL )
133


VR_LT ()
133


~VR_LT()
133


>
133


<
133


==
133


BOOL Reset()
133


BOOL SetIf(VR *vr)
133


BOOL Morph(DICOMObject *)
134


BOOL Set(char *)
134


BOOL Get(char *)
134


UINT16 GetTypeCode ()
134


UINT32 GetSetSize ()
134


VR_OB Class
135


UINT16 Group
135


UINT16 Element
135


UINT32 Length
135


void *Data
135


BOOL ReleaseMemory
135


void *SQObjectArray
135


UINT16 TypeCode
135


VR_OB ( UINT16, UINT16, UINT32, BOOL )
136


VR_OB ( UINT16, UINT16, UINT32, void * )
136


VR_OB ( UINT16, UINT16, UINT32, void *, BOOL )
136


VR_OB ()
136


~VR_OB()
136


>
136


<
136


==
136


BOOL Reset()
136


BOOL SetIf(VR *vr)
136


BOOL Morph(DICOMObject *)
137


BOOL Set(void *)
137


BOOL Get(void *)
137


BOOL VMSet(UINT, void *)
137


BOOL VMGet(UINT, void *)
137


UINT16 GetTypeCode ()
137


UINT32 GetSetSize ()
137


VR_OW Class
138


UINT16 Group
138


UINT16 Element
138


UINT32 Length
138


void *Data
138


BOOL ReleaseMemory
138


void *SQObjectArray
138


UINT16 TypeCode
139


VR_OW ( UINT16, UINT16, UINT32, BOOL )
139


VR_OW ( UINT16, UINT16, UINT32, void * )
139


VR_OW ( UINT16, UINT16, UINT32, void *, BOOL )
139


VR_OW ()
139


~VR_OW()
139


>
139


<
139


==
139


BOOL Reset()
139


BOOL SetIf(VR *vr)
140


BOOL Morph(DICOMObject *)
140


BOOL Set(void *)
140


BOOL Get(void *)
140


BOOL VMSet(UINT, void *)
140


BOOL VMGet(UINT, void *)
140


UINT16 GetTypeCode ()
140


UINT32 GetSetSize ()
140


VR_PN Class
141


UINT16 Group
141


UINT16 Element
141


UINT32 Length
141


void *Data
141


BOOL ReleaseMemory
141


void *SQObjectArray
141


UINT16 TypeCode
142


VR_PN ( UINT16, UINT16, UINT32, BOOL )
142


VR_PN ( UINT16, UINT16, UINT32, void * )
142


VR_PN ( UINT16, UINT16, UINT32, void *, BOOL )
142


VR_PN ()
142


~VR_PN()
142


>
142


<
142


==
142


BOOL Reset()
143


BOOL SetIf(VR *vr)
143


BOOL Morph(DICOMObject *)
143


BOOL Set(char *)
143


BOOL Get(char *)
143


BOOL VMSet(UINT, char *)
143


BOOL VMGet(UINT, char *)
143


UINT16 GetTypeCode ()
143


UINT32 GetSetSize ()
143


VR_SH Class
144


UINT16 Group
144


UINT16 Element
144


UINT32 Length
144


void *Data
144


BOOL ReleaseMemory
144


void *SQObjectArray
144


UINT16 TypeCode
144


VR_SH ( UINT16, UINT16, UINT32, BOOL )
145


VR_SH ( UINT16, UINT16, UINT32, void * )
145


VR_SH ( UINT16, UINT16, UINT32, void *, BOOL )
145


VR_SH ()
145


~VR_SH()
145


>
145


<
145


==
145


BOOL Reset()
145


BOOL SetIf(VR *vr)
145


BOOL Morph(DICOMObject *)
146


BOOL Set(char *)
146


BOOL Get(char *)
146


BOOL VMSet(UINT, char *)
146


BOOL VMGet(UINT, char *)
146


UINT16 GetTypeCode ()
146


UINT32 GetSetSize ()
146


VR_SL Class
147


UINT16 Group
147


UINT16 Element
147


UINT32 Length
147


void *Data
147


BOOL ReleaseMemory
147


void *SQObjectArray
147


UINT16 TypeCode
148


VR_SL ( UINT16, UINT16, UINT32, BOOL )
148


VR_SL ( UINT16, UINT16, UINT32, void * )
148


VR_SL ( UINT16, UINT16, UINT32, void *, BOOL )
148


VR_SL ()
148


~VR_SL()
148


>
148


<
148


==
148


BOOL Reset()
148


BOOL SetIf(VR *vr)
149


BOOL Morph(DICOMObject *)
149


BOOL Set(void *)
149


BOOL Get(void *)
149


BOOL VMSet(UINT, void *)
149


BOOL VMGet(UINT, void *)
149


UINT16 GetTypeCode ()
149


UINT32 GetSetSize ()
149


VR_SQ Class
150


UINT16 Group
150


UINT16 Element
150


UINT32 Length
150


void *Data
150


BOOL ReleaseMemory
150


void *SQObjectArray
150


UINT16 TypeCode
150


VR_SQ ( UINT16, UINT16, UINT32, BOOL )
151


VR_SQ ( UINT16, UINT16, UINT32, void * )
151


VR_SQ ( UINT16, UINT16, UINT32, void *, BOOL )
151


VR_SQ ()
151


~VR_SQ()
151


>
151


<
151


==
151


BOOL Reset()
151


BOOL SetIf(VR *vr)
152


BOOL Morph(DICOMObject *)
152


VR_SS Class
153


UINT16 Group
153


UINT16 Element
153


UINT32 Length
153


void *Data
153


BOOL ReleaseMemory
153


void *SQObjectArray
153


UINT16 TypeCode
154


VR_SS ( UINT16, UINT16, UINT32, BOOL )
154


VR_SS ( UINT16, UINT16, UINT32, void * )
154


VR_SS ( UINT16, UINT16, UINT32, void *, BOOL )
154


VR_SS ()
154


~VR_SS()
154


>
154


<
154


==
154


BOOL Reset()
154


BOOL SetIf(VR *vr)
155


BOOL Morph(DICOMObject *)
155


BOOL Set(void *)
155


BOOL Get(void *)
155


BOOL VMSet(UINT, void *)
155


BOOL VMGet(UINT, void *)
155


UINT16 GetTypeCode ()
155


UINT32 GetSetSize ()
155


VR_ST Class
156


UINT16 Group
156


UINT16 Element
156


UINT32 Length
156


void *Data
156


BOOL ReleaseMemory
156


void *SQObjectArray
156


UINT16 TypeCode
156


VR_ST ( UINT16, UINT16, UINT32, BOOL )
157


VR_ST ( UINT16, UINT16, UINT32, void * )
157


VR_ST ( UINT16, UINT16, UINT32, void *, BOOL )
157


VR_ST ()
157


~VR_ST()
157


>
157


<
157


==
157


BOOL Reset()
157


BOOL SetIf(VR *vr)
157


BOOL Morph(DICOMObject *)
158


BOOL Set(char *)
158


BOOL Get(char *)
158


UINT16 GetTypeCode ()
158


UINT32 GetSetSize ()
158


VR_TM Class
159


UINT16 Group
159


UINT16 Element
159


UINT32 Length
159


void *Data
159


BOOL ReleaseMemory
159


void *SQObjectArray
159


UINT16 TypeCode
159


VR_TM ( UINT16, UINT16, UINT32, BOOL )
160


VR_TM ( UINT16, UINT16, UINT32, void * )
160


VR_TM ( UINT16, UINT16, UINT32, void *, BOOL )
160


VR_TM ()
160


~VR_TM()
160


>
160


<
160


==
160


BOOL Reset()
160


BOOL SetIf(VR *vr)
160


BOOL Morph(DICOMObject *)
161


BOOL Set(char *)
161


BOOL Get(char *)
161


BOOL VMSet(UINT, char *)
161


BOOL VMGet(UINT, char *)
161


UINT16 GetTypeCode ()
161


UINT32 GetSetSize ()
161


VR_UI Class
162


UINT16 Group
162


UINT16 Element
162


UINT32 Length
162


void *Data
162


BOOL ReleaseMemory
162


void *SQObjectArray
162


UINT16 TypeCode
162


VR_UI ( UINT16, UINT16, UINT32, BOOL )
163


VR_UI ( UINT16, UINT16, UINT32, void * )
163


VR_UI ( UINT16, UINT16, UINT32, void *, BOOL )
163


VR_UI ()
163


~VR_UI()
163


>
163


<
163


==
163


BOOL Reset()
163


BOOL SetIf(VR *vr)
163


BOOL Morph(DICOMObject *)
164


BOOL Set(char *)
164


BOOL Get(char *)
164


BOOL VMSet(UINT, char *)
164


BOOL VMGet(UINT, char *)
164


UINT16 GetTypeCode ()
164


UINT32 GetSetSize ()
164


VR_UL Class
165


UINT16 Group
165


UINT16 Element
165


UINT32 Length
165


void *Data
165


BOOL ReleaseMemory
165


void *SQObjectArray
165


UINT16 TypeCode
166


VR_UL ( UINT16, UINT16, UINT32, BOOL )
166


VR_UL ( UINT16, UINT16, UINT32, void * )
166


VR_UL ( UINT16, UINT16, UINT32, void *, BOOL )
166


VR_UL ()
166


~VR_UL()
166


>
166


<
166


==
166


BOOL Reset()
166


BOOL SetIf(VR *vr)
167


BOOL Morph(DICOMObject *)
167


BOOL Set(void *)
167


BOOL Get(void *)
167


BOOL VMSet(UINT, void *)
167


BOOL VMGet(UINT, void *)
167


UINT16 GetTypeCode ()
167


UINT32 GetSetSize ()
167


VR_US Class
168


UINT16 Group
168


UINT16 Element
168


UINT32 Length
168


void *Data
168


BOOL ReleaseMemory
168


void *SQObjectArray
168


UINT16 TypeCode
169


VR_US ( UINT16, UINT16, UINT32, BOOL )
169


VR_US ( UINT16, UINT16, UINT32, void * )
169


VR_US ( UINT16, UINT16, UINT32, void *, BOOL )
169


VR_US ()
169


~VR_US()
169


>
169


<
169


==
169


BOOL Reset()
169


BOOL SetIf(VR *vr)
170


BOOL Morph(DICOMObject *)
170


BOOL Set(void *)
170


BOOL Get(void *)
170


BOOL VMSet(UINT, void *)
170


BOOL VMGet(UINT, void *)
170


UINT16 GetTypeCode ()
170


UINT32 GetSetSize ()
170


VR_XS Class
171


UINT16 Group
171


UINT16 Element
171


UINT32 Length
171


void *Data
171


BOOL ReleaseMemory
171


void *SQObjectArray
171


UINT16 TypeCode
172


VR_XS ( UINT16, UINT16, UINT32, BOOL )
172


VR_XS ( UINT16, UINT16, UINT32, void * )
172


VR_XS ( UINT16, UINT16, UINT32, void *, BOOL )
172


VR_XS ()
172


~VR_XS()
172


>
172


<
172


==
172


BOOL Reset()
172


BOOL SetIf(VR *vr)
173


BOOL Morph(DICOMObject *)
173


BOOL Set(void *)
173


BOOL Get(void *)
173


BOOL VMSet(UINT, void *)
173


BOOL VMGet(UINT, void *)
173


UINT16 GetTypeCode ()
173


BOOL SetTypeCode (UINT16)
173


UINT32 GetSetSize ()
173


VR_OX Class
174


UINT16 Group
174


UINT16 Element
174


UINT32 Length
174


void *Data
174


BOOL ReleaseMemory
174


void *SQObjectArray
174


UINT16 TypeCode
175


VR_OX ( UINT16, UINT16, UINT32, BOOL )
175


VR_OX ( UINT16, UINT16, UINT32, void * )
175


VR_OX ( UINT16, UINT16, UINT32, void *, BOOL )
175


VR_OX ()
175


~VR_OX()
175


>
175


<
175


==
175


BOOL Reset()
175


BOOL SetIf(VR *vr)
176


BOOL Morph(DICOMObject *)
176


BOOL Set(void *)
176


BOOL Get(void *)
176


BOOL VMSet(UINT, void *)
176


BOOL VMGet(UINT, void *)
176


UINT16 GetTypeCode ()
176


BOOL SetTypeCode (UINT16)
176


UINT32 GetSetSize ()
176


RTC Class
177


RTC (BOOL = TRUE, char * = NULL)
177


~RTC ()
177


BOOL AttachRTC (char *filename)
177


BOOL DetachRTC ()
177


BOOL RunTimeClass(DICOMObject *)
177


BOOL RunTimeClass(VR *)
178


UINT16 RunTimeClass(UINT16, UINT16, char *)
178


Normalized Complex Object Classes
179


CO_PatientRelationshipModule
179


CO_ReferencedVisitSequence
179


CO_ReferencedPatientAliasSOPInstanceUIDs
179


CO_PatientIdentificationModule
180


CO_PatientDemographicModule
180


CO_PatientsInsurencePlanCodeSequence
180


CO_PatientMedicalModule
180


CO_VisitRelationshipModule
181


CO_VisitIdentificationModule
181


CO_InsitutionCodeSequence
181


CO_VisitStatusModule
181


CO_VisitAdmissionModule
181


CO_AdmittingDiagnosisCodeSequence
182


CO_VisitDischargeModule
182


CO_DischargeDiagnosisCodeSequence
182


CO_VisitSchedulingModule
182


CO_StudyRelationshipModule
182


CO_ReferencedResultsSequence
182


CO_ReferencedStudyComponentSequence
183


CO_StudyIdentificationMoudle
183


CO_StudyModule
183


CO_StudySchedulingModule
183


CO_RequestedProcedureCodeSequence
183


CO_StudyAcquisitionModule
184


CO_StudyReadModule
184


CO_StudyComponentModule
184


CO_ReferencedSeriesSequence
184


CO_StudyComponentRelationshipModule
184


CO_StudyComponentStatusModule
184


CO_ProcedureCodeSequence
185


CO_ResultsRelationshipModule
185


CO_ReferencedInterpretationSequence
185


CO_ResultsIdentificationModule
185


CO_ResultsImpressionsModule
185


CO_InterpretationRelationshipModule
185


CO_InterpretationIdentificationModule
185


CO_InterpretationStateModule
186


CO_InterpretationRecordingModule
186


CO_InterpretationTranscriptionModule
186


CO_InterpretationApprovalModule
186


CO_InterpretationApproverSequence
186


CO_InterpretationDiagnosisCodesSequence
186


CO_ResultsDistributionListSequence
186


CO_PatientModule
187


CO_ReferencedPatientSequence
187


CO_GeneralStudyModule
187


CO_ReferencedStudySequence
187


CO_PatientStudyModule
187


CO_GeneralSeriesModule
188


CO_FrameOfReferenceModule
188


CO_GeneralEquipmentModule
188


CO_GeneralImageModule
189


CO_SourceImageSequence
189


CO_ImagePlaneModule
189


CO_ImagePixelModule
189


CO_ContrastBolusModule
190


CO_CineModule
190


CO_MultiframeModule
190


CO_PatientSummaryModule
190


CO_StudyContentModule
191


CO_ReferencedImageSequence
191


CO_CRSeriesModule
191


CO_CRImageModule
191


CO_CTImageModule
192


CO_MRImageModule
192


CO_NMSeriesModule
193


CO_NMEquipmentModule
194


CO_NMImageModule
194


CO_NMSPECTAcquisitionImageModule
195


CO_NMMultigatedAcquisitionImageModule
195


CO_USFrameOfReferenceModule
196


CO_USRegionCalibrationModule
196


CO_SequenceOfUltrasoundRegions
196


CO_USImageModule
197


CO_ReferencedCurveSequence
198


CO_SCEquipmentModule
198


CO_SCImageModule
198


CO_OverlayIdentificationModule
198


CO_OverlayPlaneModule
199


CO_MultiframeOverlayModule
199


CO_CurveIdentificationModule
199


CO_ReferencedOverlaySequence
199


CO_CurveModule
200


CO_AudioModule
200


CO_ModalityLUTModule
200


CO_ModalityLUTSequence
200


CO_VOILUTModule
201


CO_VOILUTSequence
201


CO_LUTIdentificationModule
201


CO_SOPCommonModule
201


CO_BasicFilmSessionPresentationModule
201


CO_BasicFilmSessionRelationshipModule
201


CO_ReferencedFilmBoxSequence
202


CO_BasicFilmBoxPresentationModule
202


CO_BasicFilmBoxRelationshipModule
202


CO_ReferencedFilmSessionSequence
202


CO_ReferencedImageBoxSequence
202


CO_ReferencedBasicAnnotationBoxSequence
202


CO_ImageBoxPixelPresentationModule
203


CO_PreformattedGrayscaleImageSequence
203


CO_PreformattedColorImageSequence
203


CO_ImageBoxRelationshipModule
203


CO_ReferencedImageOverlayBoxSequence
203


CO_ReferencedVOILUTSequence
204


CO_BasicAnnotationPresentationModule
204


CO_PrintJobModule
204


CO_PrinterModule
204


CO_ImageOverlayBoxPresentationModule
204


CO_ReferencedOverlayPlaneSequence
205


Composite Complex Object Classes
206


CRImageIODModule
206


CTImageIODModule
207


MRImageIODModule
207


NMImageIODModule
208


USImageIODModule
208


USNMultiframeImageIODModule
209


SCImageIODModule
209


StandaloneOverlayIODModule
209


StandaloneCurveIODModule
210


StandaloneModalityLUTIODModule
210


StandaloneVOILUTIODModule
210


Part 4: Endian Architectures
211


Introduction
212


NEN (Native Endian Neutral) Data Types
213


LE_UINT16  Little Endian 16 bit unsigned integer
213


LE_UINT32  Little Endian 32 bit unsigned integer
213


LE_INT16  Little Endian 16 bit signed integer
213


LE_INT32  Little Endian 32 bit signed integer
213


BE_UINT16  Big Endian 16 bit unsigned integer
213


BE_UINT32  Big Endian 32 bit unsigned integer
213


BE_INT16  Big Endian 16 bit signed integer
213


BE_INT32  Big Endian 32 bit signed integer
213


Caveats
213


Part 5: DIMSE-C Service Classes
215


Introduction
216


CEchoRQ Class
218


BOOL Read ( DICOMCommandObject *)
218


BOOL Write ( PDU_Service *)
218


CEchoRSP Class
219


BOOL Read ( DICOMCommandObject *)
219


BOOL Write ( PDU_Service *, DICOMCommandObject *)
219


CStoreRQ Class
220


BOOL Read ( DICOMCommandObject *,  DICOMDataObject *)
220


BOOL Read ( DICOMCommandObject *)
220


BOOL Write ( PDU_Service *, DICOMDataObject *)
220


BOOL Write ( PDU_Service *)
220


CStoreRSP Class
221


BOOL Read ( DICOMCommandObject *)
221


BOOL Write ( PDU_Service *, DICOMCommandObject *, UINT16)
221


BOOL Write ( PDU_Service *, DICOMCommandObject *)
221


CFindRQ Class
222


BOOL Read (            DICOMCommandObject *, PDU_Service *,DICOMDataObject *)
222


BOOL Read ( DICOMCommandObject *)
222


BOOL Write ( PDU_Service *, DICOMDataObject *)
222


BOOL Write ( PDU_Service *)
222


CFindRSP Class
223


BOOL Read (            DICOMCommandObject *, PDU_Service  *, DICOMDataObject *)
223


BOOL Read ( DICOMCommandObject *)
223


BOOL Write (            PDU_Service *, DICOMCommandObject *, UINT16,      DICOMDataObject *)
223


BOOL Write (            PDU_Service *, DICOMCommandObject *, DICOMDataObject * )
223


CMoveRQ Class
224


BOOL Read (            DICOMCommandObject *, PDU_Service *, DICOMDataObject *)
224


BOOL Read ( DICOMCommandObject *)
224


BOOL Write ( PDU_Service *, DICOMDataObject *, BYTE *)
224


CMoveRSP Class
225


BOOL Read (            DICOMCommandObject *, PDU_Service  *, DICOMDataObject *)
225


BOOL Read ( DICOMCommandObject *)
225


BOOL Write (            PDU_Service *, DICOMCommandObject *, UINT16 ErrorCode,    UINT16 NumberRemaining,  UINT16 NumberComplete,     UINT16 NumberFailed, UINT16 NumberWarning,       DICOMDataObject *)
225


Creating your own methods, a CEcho example
226


Part 6: SOP Classes
229


Introduction
230


Verification 1.2.840.10008.1.1
231


BOOL  Read ( PDU_Service *, DICOMCommandObject * )
231


BOOL  Write ( PDU_Service * )
231


StandardStorage Abstract Base Class
232


CRStorage 1.2.840.10008.5.1.4.1.1.1
232


CTStorage 1.2.840.10008.5.1.4.1.1.2
232


USMultiframeStorage 1.2.840.10008.5.1.4.1.1.3
232


MRStorage 1.2.840.10008.5.1.4.1.1.4
232


NMStorage 1.2.840.10008.5.1.4.1.1.5
232


USStorage 1.2.840.10008.5.1.4.1.1.6
232


SCStorage 1.2.840.10008.5.1.4.1.1.7
232


StandaloneOverlayStorage 1.2.840.10008.5.1.4.1.1.8
232


StandaloneCurveStorage 1.2.840.10008.5.1.4.1.1.9
232


StandaloneModalityLUT 1.2.840.10008.5.1.4.1.1.10
232


StandaloneVOILUT 1.2.840.10008.5.1.4.1.1.11
232


GEMRStorage 1.2.840.113619.4.2
232


GECTStorage 1.2.840.113619.4.3
232


BOOL  Read (
232


PDU_Service *,
232


DICOMCommandObject *,
232


DICOMDataObject * )
232


BOOL  Write ( PDU_Service *, DICOMDataObject * )
232


StandardQuery Abstract Base Class
234


PatientRootQuery 1.2.840.10008.5.1.4.1.2.1.1
234


StudyRootQuery 1.2.840.10008.5.1.4.1.2.2.1
234


PatientStudyOnlyQuery 1.2.840.10008.5.1.4.1.2.3.1
234


BOOL  Read ( PDU_Service *, DICOMCommandObject * )
234


BOOL  Write ( PDU_Service *, DICOMDataObject * )
234


virtual BOOL SearchOn (
234


DICOMDataObject *,
234


Array < DICOMDataObject * > *)
234


virtual BOOL CallBack (DICOMCommandObject *,DICOMDataObjct *)
234


StandardRetrieve Abstract Base Class
236


PatientRootRetrieve 1.2.840.10008.5.1.4.1.2.1.2
236


StudyRootRetrieve 1.2.840.10008.5.1.4.1.2.2.2
236


PatientStudyOnlyRetrieve 1.2.840.10008.5.1.4.1.2.3.2
236


BOOL  Read ( PDU_Service *, DICOMCommandObject * )
236


BOOL  Write ( PDU_Service *, DICOMDataObject * )
236


virtual BOOL SearchOn (
236


DICOMDataObject *,
236


Array < DICOMDataObject * > *)
236


virtual BOOL CallBack ( DICOMCommandObject *, DICOMDataObjct *)
236


virtual BOOL RetrieveOn (
237


DICOMDataObject *,
237


DICOMDataObject **,
237


StandardStorage **)
237


virtual BOOL QualifyOn (
237


BYTE *RemoteACRNema,
237


BYTE *MyACRNema,
237


BYTE *RemoteIPAddress,
237


BYTE *RemotePortAddress )
237


Creating your own SOP Classes, a Verification example
238


Part 7: Low-Level Examples
240


C-Echo Server Process
241


C-Echo Client Process
243


C-Find Client
245


Multi-threaded C-Echo / C-Store server
248


Part 8: High-Level Examples
251


DriverApp Class
252


VerificationApp Class
253


CTStorageApp Class
254


MyStudyRootRetrieve
256


CFindExampleApp
259


CMoveExampleApp
260


Composite Object Example
261




Forward

This version of the UCDMC DICOM Network Transport library is the first Beta release.  Many thanks to the folks out there who tested and used the Alpha releases.  In this beta release the following core areas should be fairly well debuged:

· Chapter 4 SOP Classes for Storage, Query & Retrieve, and Verification

· Chapter 6 Lowlevel DICOM Object support

· Chapter 7 DIMSE-C (only) Messaging

· Chapter 8 TCP/IP Network Transport

· Chapter 10 File (only) Disk I/O

Support was recently added for the following:

· Chapter 3 High level IOD Support

· Chapter 5 Explicit Transfer Syntax support (along with “simple” JPEG support no JPEG encoding/decoding but the JPEG transfer syntaxs will be aliased to the explicit transfer syntax).


The following platforms are supported:

Platform

Compiler

WindowsNT x86 / Windows95
Microsoft Visual C++ v2.2

WindowsNT x86 / Windows95
Watcom C++ v10

WindowsNT x86 / Windows95
Borland C++ v4.0

WindowsNT Alpha AXP
Microsoft Visual C++ v2.0

Solaris v2.3
gcc v2.6.0

SunOS v4.1
gcc v2.5.8

Irix 4 MIPS
gcc v2.5.8

DEC Ultrix MIPS
gcc v2.5.8

Macintosh Power PC
CodeWarrior v5.0

A special thanks to Deborah Hoang who worked on transcribing Part 3 of DICOM into a meta langauge which could then be compiled into C++.  With out her diligence, the IOD support would be almost useless with the quantity of typos I naturally would induce.

Mark Oskin

UC Davis Medical Center

mhoskin@ucdavis.edu

This implementation of the DICOM TCP/IP protocol transport is built up from "network objects".  A network object is a self-contained protocol unit.  This release of the UCDMC DICOM implementation completely covers base level Chapter 8 TCP/IP transport.

 A "network object" is a protocol unit that understands these fundimental functions:

· Read from a buffered transport

· Write to a buffered transport

· Set parameters

· Get parameters

It's important to realize that not included in this unit is "interrogate parameters".  Interrogation of parameters is considered a "driving" function.  Protocol units do not drive the DICOM messaging.  They are meant as collectors and senders of complex structures.  To illustrate, a DICOM TCP/IP transport must support these classes:


AAssociateRQ

Association Request


AAssociateAC

Association Accept


AAssociateRJ


Association Reject


AAbortRQ


Association Abort Request


AReleaseRQ


Association Release Request


AReleastRSP


Association Release Response


PDataTF


P-DATA Transport Function

The transport base class is called "PDU_Service".  The PDU_Service provides the "intelligence" of when to read and when to write a protocol unit.  For instance, here is the psuedo-code for a PDU_Serivce :: Connect () function:


Connect:



Link := Open TCP/IP Link



AAssociateRQ :: Write ( Link )



reply = Link :: Read



IF reply := AAssociateAC THEN return TRUE



IF reply := AAssociateRJ THEN




Close TCP/IP Link




return FALSE




END-IF

Class Hierarchy


:
implies inheritance relationship


*
implies inclusive relationship

PDU_Service


: Buffer



* Array < BufferSpace >



* Array < BufferSpace >


: AssociateRQ



* ApplicationContext




* UID



* Array < PresentationContext >




* AbstractSyntax




* UID




* Array < TransferSyntax >





* UID



* UserInformation




* MaximumSubLength





* UID




* ImplementationClass





* UID




* ImplementationVersion





* UID




* SCPSCURoleSelect





* UID


: AssociateAC



* ApplicationContext




* UID



* Array < PresentationContextAccept >




* AbstractSyntax




* UID




* TransferSyntax





* UID



* UserInformation




* MaximumSubLength





* UID




* ImplementationClass





* UID




* ImplementationVersion





* UID




* SCPSCURoleSelect





* UID


: AssociateRJ


: PDataTF



* LinkedBuffer




: Buffer





* Array < BufferSpace >





* Array < BufferSpace >


: AReleaseRQ


: AReleaseRP


: AAbortRQ


* Socket

How does one use this DICOM library?

The best introduction would be to refer to the example files included: test.cpp and sscscp.cpp.  Here is an example of a C-Echo Server.  This example writes directly to the PDU_Service class and does not use the high-level Verification class.  See the teste.C/.cpp or Part 8 for this example using the built-in SOP/DIMSE-C classes.

CEchoServer()


{


PDU_Service


PDU;


DICOMCommandObject

DCO;


DICOMCommandObject

DCOR;


VR



*vr;


UINT16



tuint16;


if(PDU.Listen(PORT))



{



PDU.Read(&DCO);



while(vr = DCO.Pop())




{




switch(vr‑>Element)





{





case
0x0000:
delete vr; break;





case
0x0002:
DCOR.Push(vr);
break;





case
0x0100:






tuint16 = 0x8030;
// 0x8030






memcpy(vr‑>Data, &tuint16, 2);






DCOR.Push(vr);
break;





case
0x0800:
DCOR.Push(vr);
break;





case
0x0110:






vr‑>Element = 0x0120;






DCOR.Push(vr);
break;





}




}



vr = new VR(0x0000, 0x0900, 0x0002, TRUE);



tuint16 = 0;



memcpy(vr‑>Data, &tuint16, 2);



DCOR.Push(vr);



PDU.Write(&DCOR);



}


// The sender should initiate the close at this point, but send


// one anyway (won’t hurt).


PDU.Close();


return ( TRUE );


}

Now, to walk you through line-by-line:

CEchoServer()


{


PDU_Service


PDU;


PDU_Service is the base class for the DICOM TCP/IP transport.  The base class behavior is fully functional.  The default behavior is to accept any incoming ACR-NEMA address, and any SOP/Abstract class.  The default (and only supported) Transfer syntax is LittleEndian 1.2.840.10008.1.2


DICOMCommandObject
DCO;


DICOMCommandObject is a "low-level" DICOM Object.  Access is via Push() and Pop().  If you examine the internals of both DICOMCommandObject and DICOMDataObject they are Priority Queues of Prioriry Queues.  The top level queue is of the group code.  Each element in that queue is a pointer to another queue of elements for that group.  In this manner one can Push() VR's into an Object without regard to Group/Element order.


DICOMCommandObject
DCOR;


VR


*vr;


VR is the base class for all VR's.  A VR is a structure with a Group / Element / Length / Value.  This corresponds to the most basic fundamental object of a DICOM Object.  Every DICOM message is built up from sequences of VR's..


UINT16


tuint16;


if(PDU.Listen(PORT))


Establish a server on a given port.  This port exists in the TCP domain on the local default IP transport of the given machine, (I.e., during socket initiation the default IP address is bound to the socket).  A TRUE return from this call indicates not only that a connection was attempted at the TCP/IP level, but that the DICOM AAssociateRQ structure was sent, parsed, and replied to successfully.  After this call, normal high level DIMSE-C services can take place over the link.



{



PDU.Read(&DCO);


Read an entire DICOM Command object from the link.  This corresponds to a complete message from the remote end.  This call is blocking.



while(vr = DCO.Pop())


Pop() is the main interface to retrieving elements from a DICOM low-level object.  There is also GetVR() and GetUINT16(); however, using those routines is discouraged because they represent a linear search through an array, (i.e., slow).




{




switch(vr‑>Element)





{





case
0x0000:
delete vr; break;


For now, DICOM low-level objects return group length codes.  This behavior is not required by DICOM v3 protocols, and in the future might be discontinued.  It is safe to delete this VR since it is automatically generated inside the DICOMObject class, (i.e., one never Push()'s a VR of Group/0x0000 into a DICOM Object).





case
0x0002:
DCOR.Push(vr);
break;


SOP Class:  In a real C-Echo server this should be checked for the correct Abstract class (note, SOP Class, and Abstract class are one and the same).





case
0x0100:






tuint16 = 0x8030;
// 0x8030






memcpy(vr‑>Data, &tuint16, 2);






DCOR.Push(vr);
break;


Command.  A C-Echo-RQ DIMSE-C command is 0x0030.  The C-Echo-RSP is 0x8030.  It is safe to assume that the public item vr->Data is allocated, and is of size 2.  Therefore we just alter the command code to be 0x8030 and push it back on the reply object.





case
0x0800:
DCOR.Push(vr);
break;





case
0x0110:






vr‑>Element = 0x0120;






DCOR.Push(vr);
break;





}




}



vr = new VR(0x0000, 0x0900, 0x0002, TRUE);



tuint16 = 0;



memcpy(vr‑>Data, &tuint16, 2);



DCOR.Push(vr);


Create a new VR and add it to the reply object.  Most of the time you create VR's dynamically on the heap with the "new" operator.  This creation can take on one of two forms:



VR(Group, Element, Length, Allocation ?)



VR(Group, Element, Length, Data, Free ?)


The first form creates an element, and allocates the amount of space for length on the heap.  This allocation is flagged "delete/TRUE".  The second method sets the Data pointer to the pointer specified, and sets the delete flag to the parameter given.  If (in both cases) the delete flag is true then when the element is deleted (or out of scope), then the data value is also deleted.



PDU.Write(&DCOR);


Write the DICOM object to the link.  This call is blocking.


}


PDU.Close();


Close the DICOM link.  This call handles all the details about sending either an AReleaseRQ message, and/or sending an AAsbortRQ message.  A return from this call  closes the link; the socket itself is closed.

 
return ( TRUE );


}

File Names/Extensions

Files are named with the following extensions:


.hpp


- Standard C++ include file


.h


- Standard C like header file


.C / .cpp

- C++ Source file


.thh


- C++ Header file (template)


.tcc


- C++ Source file (template)

Source Files:


dicom.hpp

- Standard Include file (all files)


array.thh

- Array Template Header


array.tcc

- Array Template Source


pqueue.thh

- PQueue Template Header


pqueue.tcc

- PQueue Template Source


buffer.thh

- Buffer Class Defination


buffer.tcc

- Buffer Class Source


aarq.hpp

- Class Definitions:






AAssociateRQ






PresentationClass






MaximumLength






ImplementationClass






ImplementationVersion






AbstractClass






TransferSyntax






ApplicationContext


aaac.hpp

- Class Definitions:






AAssociateAC






PresentationClassAccept


aarj.hpp

- Class Definitions:






AAssociateRJ






AReleaseRQ






AReleaseRP






AAbortRQ

 
aarj.hpp

- Source for above


pdata.hpp

- Class Definitions:






PDataTF






LinkedBuffer


deivr.h

- Definitions for:






VR






PQueueVRGroup






DICOMObject






DICOMCommandObject






DICOMDataObject


socket.hpp

- Socket I/O Class definition


unixsock.h

- Combined header information for sockets


dimsec.hpp

- DISME-C Service Objects


verify.hpp

- Verification SOP Class


storage.hpp

- SOP (Storage) Classes


qrsop.hpp

- Q/R (Query & Retrieve) SOP Classes


rtc.hpp

- Run Time Classing


filepdu.hpp

- Chapter 10 I/O support


flpdu.hpp

- Secure PDU_Service Support


endian.hpp

- Endian Nuetral Support

[---------------------------------------------------------------------------]


test.C


- Command line DICOM test program


teste.C


- Command Line DICOM test program


sscscp.C

- Windows NT Service Object SSC-SCP


idicom.cpp

- Windows NT Service Object installation program.

Part 2: PDU_Service (DICOM Chapters 8,10)

Buffer Class TC "Buffer Class" \f C \l "1" 
Purpose:

Provides flexible buffered I/O ontop of any derived base transmission class.  Provides for endian translation, and dynamic allocation.

Theory:

Buffers are allocated from a dynamically growing array of type buffer space.  Each buffer space can handle a fixed block size (user selectable), and buffers are allocated on-demand, and freed upon termination of use.  Maximum buffer space is limited by available memory.  It is recommended you set a reasonable value for the default buffer allocation (like 4k).  The usual trade offs: too little and performance suffers; too much, and memory is wasted.  It is extremely important that you compile everything with the NATIVE_ENDIAN constant set to either LITTLE_ENDIAN or BIG_ENDIAN.  If you port the libraries, but get really odd results talking to another system (but no problems having the demo program talk to itself), then you have the endian wrong.

Interface:

BOOL
SetBreakSize( UINT )


Sets the default allocation memory size.  This tells  the buffer what block size of memory should be allocated.  Setting this value to low can cause an increase in overhead, both in time and memory for large buffer operations.  Setting it to high can waste memory for small buffer operations.


BOOL
SetIncomingEndian( UINT )


Sets the type of Endian of the incoming data.  If the type of endian differs from the native endian architecture, then a series of byte swapping operations are performed on >> operations.


BOOL
SetOutgoingEndian ( UINT )


Sets the type of endian data to output.  As the data is placed in the outgoing buffer, it is translated.  Note this translation only takes place on << operations (same for >> operations).


>> <<


Overloaded operations, which understand BYTE, UINT16, and UINT32, char, INT16, INT32 data types.  These operations correctly transform Endian architectures.


BOOL
Flush ()


BOOL
Flush ( UINT )


Flush () without any arguments flushes the entire outgoing buffer to the transport medium.  With one argument, only X bytes of data are flushed.  (This feature is rarely used, except in the Linked Buffer class.)


BOOL
Kill(UINT)


Kill X bytes from the incoming buffer.  This is generally used when communication is corrupted in some way.


BOOL
Read(BYTE *, UINT)


Read X bytes from the input buffer (blocking).  Bytes are read binary, without any endian translation.


BOOL
Write(BYTE *, UINT)


Write X bytes to the output buffer.  The buffer is not flushed, and the data is quarried for a later push.


virtual
INT

ReadBinary(BYTE *, UINT) = 0


virtual
BOOL

SendBinary(BYTE *, UINT) = 0


These routines comprise the "hooks" into the derived transport class.  Any transport class (or any class that wants to pretend to look like a transport class), must support these routines (ANSI C++ won’t compile, and will give an Abstract Class defination error).  ReadBinary does not have to read the number of bytes specified on the argument, but it must return -1 on critical errors (errors which should terminate the session).  It must also not write past the amount specified on the argument list.  SendBinary must block to send the data.  And must send the amount of data specified on the argument list.

LinkedBuffer Class

Purpose:

Provides a convient memory storage, for a “pre-buffered” data set.  For instance, if there is a raw data file to be transmitted, it is convient to store this file in memory, and then have a protocol class insert the control codes for it's protocol "in line" with the data set, as the data is moving out of the buffer.  Put another way, if a protocol "packets" data with signalling, then it makes logical sense to have the data inside the packets be removed from the signalling bytes.  The LinkedBuffer was designed for this purpose.  In the DICOM protocol, the raw VR's are translated into a sequence of bytes and put in a LinkedBuffer.  A P-DATA-TF protocol class pulls bytes from this buffer and chops them into separate PDU service requests, and then outputs them to the main transport buffer.  A reverse process is done on incoming P-DATA-TF requests.

Theory:

See "Buffer" class.  LinkedBuffer is a derived class from Buffer.

Interface:

BOOL
Fill(Buffer &, UINT)


Fill the buffer passed as an argument with X bytes of the LinkedBuffer.


BOOL
Flush(Buffer &, UINT)


Flush X bytes of the LinkedBuffer into the buffer passed as an argument.

Array<DATATYPE> Template Class

Purpose:

Provides a flexible, dynamically growing array of any data type.  Strong type-checking (a feature of C++) is used, rather than having an unsafe, common base class array type.  Associated control features, such as control over self destruct on end of scope, are added for added flexibility.

Theory:

(Currently) built atop a linked list structure.  This will probably change in future evolutions of the software, since so much of the protocol implementation uses this Array type.  (i.e., A little work on speeding it up will go a long way toward improving the overall performance of the software).

Interface:

DATATYPE & Add(DATATYPE &)


Adds the argument of type DATATYPE to the end of the array.


DATATYPE & Get( UINT )


Gets a reference to the value stored in position X of the array.


DATATYPE & RemoveAt( UINT )


Removes the array element at position X in the array, and returns that element.


DATATYPE & operator []


Gets a reference to the value stored in position X of the array.


UINT
GetSize()


Gets the size of the array.

PQueue<DATATYPE> Template Class

Purpose:



Provides a sorted heap of elements of type DATATYPE.

Theory:



Class is a derived class of Array<DATATYPE>.

Interface:

DATATYPE & Push( DATAYPE & )


Adds an object of type DATATYPE on the heap.


DATATYPE & Pop( DATATYPE &)


Removes the lowest value DATATYPE from the heap.

PQueuePtr<DATATYPE> Template Class

Purpose:

Provides a sorted heap, where the objects stored are pointers to objects, and the sorting order is the order of the objects themselves.  (i.e., In order to determine the order of the heap, the pointers are first de-referenced, and then compared).

Theory:

Sort of a hack.  In true object orientated fashion, this class would not be needed, but it's a trade-off between speed and elegance; and in this case speed won out.

Interface:

DATATYPE & Push ( DATATYPE & )


Adds an object of type DATATYPE on the heap.


DATATYPE & Pop ( DATATYPE & )


Removes the lowest value DATATYPE from the heap.

Special Note:

In order to use this class, you must supply a data type which is a pointer.  For instance, these all mean different things:

PQueue<int>
Heap of integers (sorted by value)

PQueue<int *>
Heap of pointers (sorted by address)

PQueuePtr<int>
Error.  (*integer) will de-reference to an 
 invalid pointer (if you’re lucky).

PQueuePtr<int *>
Heap of pointers (sorted by value)

Socket Class

Purpose:

Provides a machine independent interface to the TCP/IP network.

Theory:

In most cases, there is a finite way to design the interface to a TCP/IP network.  UNIX uses "Berkeley Sockets", Windows uses "WinSock", which is almost Berkeley Sockets.  A DOS-based system like PC/TCP uses something almost berkeley socket compatible (a slight difference in the concept of listen/accept).  The purpose of this class is to provide as thin a wrapper around the machine sub-system as possible, while maintaining cross-platform portability.

Interface:

BOOL
Open(char *dest, char *port)


Open a connection to the destination, to the specific port.  Both the destination and port can be given as symbolic names.  (i.e., these calls are functionally equivalent:



Open ( "152.79.140.1", "23" )



Open ( "imrad.ucdmc.ucdavis.edu", "telnet" )

and, so long as DNS is working, will return the same value.


BOOL
Close()


Closes a socket connection


INT
ReadBinary(BYTE *, UINT)


Reads up to X bytes into the buffer given as an argument.  Returns either -1 on a critical error, or the amount of data actually read (can return 0 data read, and this should not be an error).


BOOL
SendBinary(BYTE *, UINT)


Sends (blocking) X bytes of the buffer given as an argument over the connected socket.


BOOL
Listen(char *port)


Sets the socket up for listening on the named port.


BOOL
Accept()


Blocks until a connection is opened to the named port.

AAssociateRQ Class

Purpose:
To provide all the functionality of an AAssociateRQ object.  Including read / write from a buffered link.  Setting / Getting of service parameters.

Theory:
As in all protocol objects, this one is designed for an explicit read() and a readdynamic() operation.  (i.e., an external state-machine can "drive" these objects).  Contained inside the AAssociateRQ class are ApplicationContext, PresentationContext's, and UserInformation classes.  Each of these objects is similar in design, in that read / readdynamic / write calls all function the same (as does Size() calls).  The AAssoicateRQ class (as with all protocol classes) is not designed to interrogate its parameters after a read() from a network link.  Its goal is to get the data, and package it into an organized manner.  A high level state-machine should look at this data, then send the correct object back to the calling party.

Interface:

ApplicationContext
AppContext


Public data member of the ApplicationContext class.  See the ApplicationContext class documentation for how to access this object.


Array<PresentationContext>
PresContexts


Public data member of type Array<PresentationContext>.  See the Array template, and PresentationContext class documentation on how to access this object.


UserInformation
UserInfo


Public data member of the type UserInformation.  See the UserInformation class documentation for how to access this object.


AAssociateRQ ()


Constructor.  Called automatically during object instantiation.


AAssociateRQ ( BYTE *, BYTE * )


Constructor.  Same as AAssociateRQ(), SetCallingApTitle(BYTE *), SetCalledApTitle (BYTE *).


~AAssociateRQ ()


Destructor.  Responsible for freeing up the PresentationContext array.


void
SetCalledApTitle ( BYTE * )


Sets the CalledAp member of the AAssociateRQ class.  The CalledAp title corresponds to the "remote" ACR-Nema address.


void
SetCallingApTitle ( BYTE * )


Sets the CallingAp member of the AAssociateRQ class.  The CallingAp title corresponds to the "local" ACR-Nema address.


void
SetApplicationContext ( ApplicationContext & )


Sets the ApplicationContext member of the AAssociateRQ class.  This is usually set to the standard "DICOM" UID.


void
AddPresentationContext ( PresentationContext & )


Adds a PresentationContext to the array of presentation classes.  Note that the presentation class is not checked for uniqueness among the other presentation classes in the array.  This function should not be accessed directly from a higher level than the PDU_Service class.  (PDU_Service provides a high level access function which builds a presentation context from SOP (Abstract) UID automatically.)


void
SetUserInformation ( UserInformation & )


Sets the UserInformation member of the AAssociateRQ class.  This should not be accessed from any level higher than the PDU_Service class.  All supported UserInformation objects are parameters for the protocol stack level itself, and not for the application level.


BOOL
Write ( Buffer & )


Writes the AAssociateRQ class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire AAssociateRQ class from a buffer.  Including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire AAssociateRQ class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  Very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.  The size may not correspond with the number of incoming bytes on an AAssociateRQ packet.  Some objects contained in the UserInformation packet are considered "baggage", and are discarded.

AAssociateAC Class

Purpose:

To provide all the functionality of an AAssociateAC object.  Including read / write from a buffered link.  Setting / Getting of service parameters.

Theory:

As in all protocol objects, this one is designed for an explicit read() and a readdynamic() operation; (i.e., an external state-machine can "drive" these objects).  Contained inside the AAssociateAC class is an application context, an array of PresentationContextAccept's, and UserInformation classes.  Each of these objects is similar in design, in that read / readdynamic / write calls all functions the same (as does Size() calls).  The AAssoicateAC class (as with all protocol classes) is not designed to interrogate its parameters after a read() from a network link.  Its goal is to get the data and package it into an organized manner.  A high level state-machine should look at this data and send the correct object back to the calling party.

Interface:

BYTE
CalledApTitle[16]


Publicly accessible data item which contains the Called Application Title (remote app title).  This member is really stored in a 17 byte array (so don't worry about the appended null character).  This member is really the new name for the remote ACR-Nema address.


BYTE
CallingApTitle[16]


Publicly accessible data item which contains the Calling Application Title (local app title).  This member is really stored in a 17 byte array (to offset the null terminated strings in C++).  This member is really the new name for the local ACR-Nema address.


ApplicationContext
AppContext


Publicly accessible data item which contains the application context.  An application context is usually set to the default DICOM application context (a UID).  However, different implementations (particularly those which where written to ACR-Nema v2 specifications) did not use the default DICOM uid.


Array<PresentationContextAccept>
PresContextAccepts


Publicly accessible data item which contains a list of PresentationContextAccept classes.  A Presentation Context Accept is described in the PresentationContextAccept class documentation.  In summary, each PresentationContext proposed in the AAssociateRQ packet is read and an appropiate PresentationContextAccept is generated for it.  The accept structure contains such information as what TransferSyntax class to use, and appropriate error codes if applicable.


UserInformation
UserInfo


This object is identical in nature to the one used in the AAssociateRQ packet.


AAssociateAC ()


Constructor.  Called automatically during object instantiation.


AAssociateAC ( BYTE *, BYTE * )


Constructor.  Same as AAssociateAC(), SetCallingApTitle(BYTE *), SetCalledApTitle (BYTE *).


~AAssociateAC ()


Destructor.  Responsiable for freeing up the PresentationContextAccept array.


void
SetCalledApTitle ( BYTE * )


Sets the CalledAp member of the AAssociateAC class.  The CalledAp title corresponds to the "remote" ACR-Nema address.


void
SetCallingApTitle ( BYTE * )


Sets the CallingAp member of the AAssociateAC class.  The CallingAp title corresponds to the "local" ACR-Nema address.


void
SetApplicationContext ( ApplicationContext & )


Sets the ApplicationContext member of the AAssociateAC class.  This is usually set to the standard "DICOM" UID.


void
AddPresentationContextAccept ( PresentationContextAccept & )


Adds a PresentationContextAccept to the array of presentation classes accepts.  Note that the presentation context accept class is not checked for uniqueness among the other Presentation Context Accept Classes in the array.  This function should not be accessed directly from a higher level than the PDU_Service class.  (PDU_Service provides a high level access function which builds a presentation context accept from a presentation context automatically.)


void
SetUserInformation ( UserInformation & )


Sets the UserInformation member of the AAssociateAC class.  This should not be accessed from any level higher than the PDU_Service class.  All supported UserInformation objects are parameters for the protocol stack level itself, and not for the application level.


BOOL
Write ( Buffer & )


Writes the AAssociateAC class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire AAssociateAC class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire AAssociateAC class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.  The size may not correspond with the number of incoming bytes on an AAssociateAC packet.  Some objects contained in the UserInformation packet are considered "baggage" and are not sized.

AAssociateRJ Class

Purpose:

Like all protocol classes this class encapsulates all aspects of an AAssociateRJ PDU request packet.  The packet is for rejecting an incoming association.

Theory:

As in all protocol objects, this one is designed for an explicit read() and a readdynamic() operation, (i.e., an external state-machine can drive these objects).  Each of these objects is similar in design, in that read / readdynamic / write calls all function the same (as does Size() calls).  The AAssociateRJ class (as with all protocol classes) is not designed to interrogate its parameters after a read() from a network link.  Its goal is to get the data and package it into an organized manner.  A high level state-machine should look at this data and send the correct object back to the calling party.

Interface:

BYTE
Result


Result code.

1
Rejected Permanent

2
Rejected Transient


*See Reason


BYTE
Source


Source code (PDU level, or IOD Object level)

1
DICOM UL Service User

2
DICOM UL Service Provider (ACSE Related)

3
DICOM UL Service Proivder (Presentation Related)


*See Reason


BYTE
Reason


Reason for Rejection.  This field is usually the one you should check to find anything useful.

1
No reason

2
Application Context name not supported

3
Calling Application title is not known

7
Called Application title is not known


Most common reasons are 3 (flat out rejection of Abstract classes proposed), and 7 (rejection of ACR-Nema address).


AAssociateRJ ()


Constructor.  Sets up some initial default values.


AAssociateRJ (BYTE, BYTE, BYTE)


Constructor.  Sets up the Result/Source/Reason according to the parameters given.


~AAssociateRJ ()


Destructor.  (Empty.  Currently does nothing).


BOOL
Write ( Buffer & )


Writes the AAssociateRJ class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire AAssociateRJ class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire AAssociateRJ class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  Very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

AReleaseRQ Class

Purpose:

Like all protocol classes this class encapsulates all aspects of an AReleaseRQ PDU request packet.  The packet is for dropping an established association.

Theory:

As in all protocol objects, this one is designed for an explicit read() and a readdynamic() operation, (i.e., an external state-machine can "drive" these objects).  Each of these objects is similar in design, in that read / readdynamic / write calls all function the same (as does Size() calls).  The AReleaseRQ class (as with all protocol classes) is not designed to interrogate its parameters after a read() from a network link.  Its goal is to get the data and package it into an organized manner.  A high level state-machine should look at this data and send the correct object back to the calling party.

Interface:

AReleaseRQ ()


Constructor.  Sets up some initial default values.


~AReleaseRQ ()


Destructor.  (Empty.  Currently does nothing).


BOOL
Write ( Buffer & )


Writes the AReleaseRQ class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire AReleaseRQ class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire AReleaseRQ class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

AReleaseRP Class

Purpose:

Like all protocol classes this class encapsulates all aspects of an AReleaseRP PDU request packet.  The packet is for answering the request to drop an established association.

Theory:

As in all protocol objects, this one is designed for an explicit read() and a readdynamic() operation, (i.e., an external state-machine can "drive" these objects).  Each of these objects is similar in design, in that read / readdynamic / write calls all function the same (as does Size() calls).  The AReleaseRP class (as with all protocol classes) is not designed to interrogate its parameters after a read() from a network link.  Its goal is to get the data and package it into an organized manner.  A high level state-machine should look at this data and send the correct object back to the calling party.

Interface:

AReleaseRP ()


Constructor.  Sets up some initial default values.


~AReleaseRP ()


Destructor.  (Empty.  Currently does nothing).


BOOL
Write ( Buffer & )


Writes the AReleaseRP class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen and PDU_Service() :: Close() service methods.


BOOL
Read ( Buffer & )


Reads the entire AReleaseRP class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen  and PDU_Service() :: Close() service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire AReleaseRP class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

AAbortRQ Class

Purpose:

Like all protocol classes this class encapsulates all aspects of an AAbortRQ PDU request packet.  The packet is for dropping an established association because of some unexpected event (for instance, if the underlying protocol messed up, or the remote end send a corrupted object).

Theory:

As in all protocol objects, this one is designed for an explicit read() and a readdynamic() operation, (i.e., an external state-machine can "drive" these objects).  Each of these objects is similar in design, in that read / readdynamic / write calls all function the same (as does Size() calls).  The AAbortRQ class (as with all protocol classes) is not designed to interrogate its parameters after a read() from a network link.  Its goal is to get the data, and package it into an organized manner.  A high level state-machine should look at this data, and send the correct object back to the calling party.

Interface:

BYTE
Source


Source of the error


BYTE
Reason


Reason for terminating association.


AAbortRQ ()


Constructor.  Sets up some initial default values.


~AAbortRQ ()


Destructor.  (Empty.  Currently does nothing).


BOOL
Write ( Buffer & )


Writes the AAbortRQ class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen, and PDU_Service :: Close() service methods.


BOOL
Read ( Buffer & )


Reads the entire AAbortRQ class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire AAbortRQ class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

ApplicationContext
Class

Purpose:

Provides all high level functionality of an application context, including Set/Get of the application context UID, along with Read/Write/Size methods for network transport.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  The application context uid itself is stored in an UID object.

Interface:

UID
ApplicationContextName


The actual data storage area for the application context.


ApplicationContext()


Constructor.  Currently only clears the ApplicationContextName variable.


ApplicationContext (UID &)


Constructor.  Like ApplicationContext() but sets the ApplicationContextName variable.


ApplicationContext ( BYTE * )


Constructor.  Like ApplicationContext(UID &)


~ApplicationContext ()


Desstructor.  Currently empty.


void
Set(UID &)


Sets the ApplicationContextName


void
Set(BYTE *)


Sets the ApplicationContextName


BOOL
Write ( Buffer & )


Writes the ApplicationContext class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire ApplicationContext class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire ApplicationContext class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

AbstractSyntax
Class

Purpose:

Provides all high level functionality of an abstract syntax, including Set/Get of the abstract syntax UID, along with Read/Write/Size methods for network transport.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  The abstract syntax uid itself is stored in an UID object.

Interface:

UID
AbstractSyntaxName


The actual data storage area for the abstract syntax.


AbstractSyntax()


Constructor.  Currently only clears the AbstractSyntaxName variable.


AbstractSyntax (UID &)


Constructor.  Like AbstractSyntax() but sets the AbstractSyntaxName variable.


AbstractSyntax ( BYTE * )


Constructor.  Like AbstractSyntax(UID &)


~AbstractSyntax ()


Desstructor.  Currently empty.


void
Set(UID &)


Sets the AbstractSyntaxName


void
Set(BYTE *)


Sets the AbstractSyntaxName


BOOL
Write ( Buffer & )


Writes the AbstractSyntax class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire AbstractSyntax class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire AbstractSyntax class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  Very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

TransferSyntax
Class

Purpose:

Provides all high level functionality of a transfer syntax, including Set/Get of the transfer syntax UID, along with Read/Write/Size methods for network transport.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  The transfer syntax uid itself is stored in an UID object.

Interface:

UID
TransferSyntaxName


The actual data storage area for the transfer syntax.


UINT
EndianType


The endian type.  (LITTLE_ENDIAN / BIG_ENDIAN).  This field is not actually transmitted over the network (it is implied implictly in the transfer syntax UID), however, it is used by the Read/Write methods in the PDU_Service class to prepare a buffer for transfer syntax translation.


* Use of this field is obselate.


TransferSyntax()


Constructor.  Currently only clears the TransferSyntaxName variable.


TransferSyntax (UID &)


Constructor.  Like TransferSyntax() but sets the TransferSyntaxName variable.


TransferSyntax ( BYTE * )


Constructor.  Like TransferSyntax(UID &)


~TransferSyntax ()


Desstructor.  Currently empty.


void
Set(UID &)


Sets the TransferSyntaxName


void
Set(BYTE *)


Sets the TransferSyntaxName


BOOL
Write ( Buffer & )


Writes the TransferSyntax class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire TransferSyntax class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire TransferSyntax class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

ImplementationClass
Class

Purpose:

Provides all high level functionality of an implementation class, including Set/Get of the ImplementationClass UID, along with Read/Write/Size methods for network transport.  An Implementation Class is a PDU level parameter.  As a user of the DICOM protocol you should not be using this class.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  The implementation class uid itself is stored in an UID object.

Interface:

UID
ImplementationClassName


The actual data storage area for the implementation class.


ImplementationClass()


Constructor.  Currently only clears the ImplementationClassName variable.


ImplementationClass (UID &)


Constructor.  Like ImplementationClass() but sets the ImplementationClassName variable.


ImplementationClass ( BYTE * )


Constructor.  Like ImplementationClass(UID &)


~ImplementationClass ()


Destructor.  Currently empty.


void
Set(UID &)


Sets the ImplementationClassName


void
Set(BYTE *)


Sets the ImplementationClassName


BOOL
Write ( Buffer & )


Writes the ImplementationClass class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire ImplementationClass class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire ImplementationClass class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  Very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

ImplementationVersion
Class

Purpose:

Provides all high level functionality of an implementation version, including Set/Get of the ImplementationVersion UID, along with Read/Write/Size methods for network transport.  An implementation class is a PDU level parameter.  As a user of the DICOM protocol you should not be using this class.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  The implementation version uid itself is stored in an UID object.

Interface:

UID
Version


The actual data storage area for the implementation version.


ImplementationVersion()


Constructor.  Currently only clears the Version variable.


ImplementationVersion (UID &)


Constructor.  Like ImplementationVersion() but sets the Version variable.


ImplementationVersion ( BYTE * )


Constructor.  Like ImplementationVersion(UID &)


~ImplementationVersion ()


Destructor.  Currently empty.


void
Set(UID &)


Sets the Version


void
Set(BYTE *)


Sets the Version


BOOL
Write ( Buffer & )


Writes the ImplementationVersion class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire ImplementationVersion class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire ImplementationVersion class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  Very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

SCPSCURoleSelect
Class

Purpose:

Provides high level functionality of an SCPSCU Role Select.  This object is read from a network but is never written back.  It is considered baggage and is not implemented yet.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write. 

Interface:

UID
uid


Public data member corresponding to the Abstract SOP class that this role select object is about.


BYTE
SCURole


The role of the SCU


BYTE
SCPRole


The role of the SCP


SCPSCURoleSelect()


Constructor.  Currently only sets up some internal members.


~SCPSCURoleSelect()


Destructor.  Currently empty.


BOOL
Write ( Buffer & )


Writes the SCPSCURoleSelect class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire SCPSCURoleSelect class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire SCPSCURoleSelect class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

MaximumSubLength
Class

Purpose:

Provides all high level functionality of a maximum sub length class, including Set/Get of the MaximumSubLength value, along with Read/Write/Size methods for network transport.  A maximum sublength class is a PDU level parameter.  As a user of the DICOM protocol you should not be using this class.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write. 

Interface:

MaximumSubLength()


Constructor.  Currently sets the maximum sublength to 16384


MaximumSubLength (UINT32)


Constructor.  Like MaximumSubLength() but sets the value.


~MaximumSubLength ()


Destructor.  Currently empty.


void
Set(UINT32)


Sets the Maximum Sub Length.  This must be less than 16384 as defined in the DICOM v3 draft documents.


UINT32
Get()


Get the maximum sub length.


BOOL
Write ( Buffer & )


Writes the MaximumSubLength class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire MaximumSubLength class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire MaximumSubLength class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

UserInformation
Class

Purpose:

Provides all the functionality of a user information section of an AAssociateRQ / AC message.  This class is a PDU level parameter (in this implementation) and should not be used by a user of the PDU_Service class.  Exchanged within this class are such details as MaximumSubLength, ImplementationClass / Version, and Role Select.  This class currently implements only a subset of the full DICOM v3 standard.  This subset includes all required user information parameters.  All required user information parameters are PDU level.  In the future there may be support for some upper lay parameters.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  

Interface:

UINT32
Baggage


This parameter stores a "size" containing the number of bytes which were discarded on an incoming AAssociateRQ / AC message.  This parameter allows the user information class to support the incoming of private user information parameters.  It should be noted that private (or unsupported) user information classes are not sent back in an AAssociateAC class; however, this is within DICOM v3 conformance.


MaximumSubLength
MaxSubLength


MaxiumSubLength protocol unit.  See the section on MaximumSubLength.  This protocol unit is always sent during an AAssociateRQ / AC.


ImplementationClass
ImpClass


ImplementationClass protocol unit.  See the section on ImplementationClass.  This protocol unit is always sent during an AAssociateRQ / AC.


ImplementationVerision
ImpVersion


ImplementationVersion protocol unit.  See the section on ImplementationVersion.  This protocol unit is always sent during an AAssociateRQ / AC.


UserInformation ()


Constructor.  Intializes each of the protocol units.


~UserInformation ()


Destructor.  Currently empty.


void
SetMax(MaximumSubLength &)


Copies the parameter into the MaxSubLength value.


UINT32
GetMax ()


Returns the maximum sublength value


BOOL
Write ( Buffer & )


Writes the UserInformation class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire UserInformation class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire UserInformation class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

PresentationContext
Class

Purpose:

A "Presentation Context" is a way of saying, "I'm can transfer this type of high level object, using any of these low-level transfer syntaxs."  (A typical message is: "I'm going to send CT images using implicit Little Endian transfer syntax").  A PresentationContext contains the high level object UID (AbstractSyntax), and a number of propesed TransferSyntax UIDs.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  

Interface:

AbstractSyntax
AbsSyntax


See the class documentation on AbstraxSyntax classes.


Array < TransferSyntax >
TrnSyntax


The array of proposed Transfer Syntaxs.  See the class documentation on TransferSyntax's, as well as the PDU_Service documentation.  This implementaion of the PDU_Service class handles the transfer syntaxs automatically.  A user of the PDU_Service class need not worry about this field.


PresentationContext()


Constructor.  Called automatically.  Sets up internal parameters only.


PresentationContext ( AbstractSyntax &, TransferSyntax & )


Constructor.  Like PresentationContext(), except the AbsSyntax field is set, and one TransferSyntax is added to the array of proposed transfer syntaxs.


~PresentationContext()


Destructor.  Responsible for clearing the TransferSyntax array.


void
SetAbstraxtSyntax ( AbstractSyntax & )


Sets the abstract syntax (SOP class) for this PresentationContext.


void
AddTransferSyntax ( TransferSyntax & )


Adds the transfer syntax to the proposed transfer syntax array.


BOOL
Write ( Buffer & )


Writes the PresentationContext class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire PresentationContext class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire PresentationContext class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects. It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

PresentationContextAccept
Class

Purpose:

A PresentationContextAccept is a protocol unit that is generated for an AAssociateAC message for each PresentationContext sent in the AAssociateRQ message.  The fields generated in this class are set by the PDU_Service class which makes virtual function calls to determine acceptence.  See the PDU_Service class documentation for where and why this is done.

Theory:

Straight forward implementation.  See any of the protocol classes for a description on network read/write.  

Interface:

TransferSyntax
TrnSyntax


Of the proposed TransferSyntax's in the PresentationContext sent inside the AAssociateRQ message, this field contains the UID of one of those syntaxs.  See the PDU_Service class documentation for how this parameter is chosen.


PresentationContextAccept()


Constructor.  Called automatically.  Sets up internal parameters only.


PresentationContextAccept ( TransferSyntax & )


Constructor.  Like PresentationContextAccept(), except the TransferSyntax is set.


~PresentationContextAccept()


Destructor.  Responsible for clearing the TransferSyntax array.


void
SetTransferSyntax ( TransferSyntax & )


Sets the Transfer Syntax (SOP class) for this PresentationContextAccept.


void
SetResult (BYTE)


Sets the result parameter (accepted, rejected, etc).


BYTE
GetResult ()


Gets the result paramter.


BOOL
Write ( Buffer & )


Writes the PresentationContextAccept class packet to a buffer.  The object should first be Size()'ed.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
Read ( Buffer & )


Reads the entire PresentationContextAccept class from a buffer, including the first identifying byte.  This function should not be accessed directly.  See the PDU_Service :: Connect() and PDU_Service() :: Listen service methods.


BOOL
ReadDynamic ( Buffer & )


Reads the entire PresentationContextAccept class from a buffer, except for the first identifying byte.  This function should never be accessed directly, except in a protocol state-machine within the PDU_Service class.


UINT32
Size()


Sizes the object, manipulating the internal data member’s length for all contained objects.  It is very important that this member is called before a Write ().  No harm is done from multiple calls to this function.  The size returned is the absolute size, which does not correspond directly with the "length to end" field of the DICOM protocol field.

UID
Class

Purpose:

A UID is a specialized type of string.  It's restricted to a maximum of 64 characters.  Future implementations of this protocol stack will concentrate on deriving specialized type of UID classes from the base UID class.  For instance, it makes more sense to have a TransferSyntax be a specialized type of UID (an inheritance relationship), than the way it's currently set out with an inclusive relationship.

Theory:

Fixed string size of 65 bytes is allocated, along with a length field.

Interface:

UID ()


Clears the UID.


void
Set(BYTE *)


void
Set(UID &)


void
Set(char *)


=


Sets the UID to the parameter.  BYTE *, and char * must be null terminated strings.


BYTE
*GetBuffer ( UINT )


Gets a pointer to the internal buffer.  You must pass a minimum length parameter.


void
SetLength ( UINT )


Sets the length field.  This is used for incoming UID's on a network link.  Such UID's are not null terminated, thus it helps to convert them.


UINT
GetSize ()


Gets the length of a UID


==


Operator == to test equality.


PDataTF
Class

Purpose:

Provides the PDU protocol services to transfer byte streams using DICOM PDU level packets.  The byte stream to be transmitted / received is stored in a linked buffer and is stored as a public parameter inside the class.  This class is different than the other protocol classes.  There is no Size() method.  See the PDU_Service class *code* to see how this class is driven.

Theory:

Basic philosophy is that DICOM objects are first converted into byte streams.  These byte streams are then arbitrarily chopped up (in size equal to the MaximumSubLength field) and then pushed back over another byte stream.  One way to think of this class is that an arbitrarily long data stream must be "framed" inside smaller packets.  This framing is added for outgoing objects, and removed for incoming ones.  This class does that with the help of an outside driver function.

Interface:

LinkedBuffer
VRBuffer


Linked Buffer to send / receive data from.


BOOL
Write ( Buffer & )


Writes all the data in the VRBuffer LinkedBuffer to the buffer passed as a parameter.  Framing information is added.


BOOL
ReadDynamic ( Buffer & )


A Single PDU level frame PDataTF packet is read and added to the VRBuffer.  This read may not correspond to a full object.

PDU_Service
Class

Purpose:

Provide all the high level functionality to construct DICOM servers and clients.  The interface provided is at the Connect/Listen and Read/Write of DICOM object level.  Most low level protocol details are hidden.

Theory:

As a user of a PDU level class, you need not be aware of transfer syntax, link-layer mediums, or association negotiation.  What you want is a high level way of saying I want to pass these objects over some DICOM compatible link.  That's what the PDU_Service class provides.  To open an outgoing connection you simply say what IOD classes you will be sending, and then provide an IP/Port address.  To create a server, just provide the TCP port address.  Once the link is established, you can Read / Write entire DICOM objects at once.  You should not worry about how the object is sent / received, just make sure that it was done so.

Interface

BOOL
SaveDICOMDataObject (



char
*filename,



UINT
Format,



DICOMDataObject *)


Saves a DICOMDataObject to disk in one of the following formats:

Format
Description

ACRNEMA_VR_DUMP
A file format commonly referred to as “ACR-NEMA v2”.  Although there is no standard format for this, there is an accepted standard.  This format is a straight raw Implicit Little Endian VR dump.  It is compatible with CTN v1.5

DICOM_CHAPTER_10_IMPLICIT
This is the pre-change DICOM Chapter 10 file format.  It is a Chapter 10 file encoded strickly with Implicit Little Endian

DICOM_CHAPTER_10_EXPLICIT
This is the newest (and standardized) DICOM Chapter 10 compatible file.  The file meta header is encoded as explicit Little Endian, and the remainder of the object is encoded implicit little endian.


DICOMDataObject
*LoadDICOMDataObject(char *filename)


Loads a DICOMDataObject from disk.  The format of the object is automatically detected.  All three of the above formats is accpeted (and detected for automatically)


BOOL
ClearAbstractSyntaxs()


Clears all known Abstract Syntaxs


BOOL
AddAbstractSyntax(UID &)


Adds an Abstract syntax to the list of abstract syntaxs to be proposed during an association negotiation (outgoing)


BOOL
SetApplicationContext(UID &)


Sets the Application Context for outgoing connections.


BOOL
SetLocalAddress(BYTE *)


Sets the local ACR-NEMA address for outgoing connections.


BOOL
SetRemoteAddress(BYTE *)


Sets the remote ACR-NEMA address for outgoing connections.


BOOL
Connect(BYTE *, BYTE *)


Opens a TCP/IP connection to IP / PORT.  If this procedure returns, the PDU level negotiation is done, the connection was accepted.  The remote end is ready to receive a DICOM Object.


BOOL
Close()


Disconnect a session.  This disconnection may be an AAbortRQ or an AReleaseRQ depending on what the state of communication.


BOOL
Listen(BYTE *)


Hang a listen on a local TCP port.  Incoming connections are fully associated before this procedure returns.  A user should check the return value.  TRUE = accepted, ready to perform DICOM Object communication.  FALSE = rejected.


BOOL
Multiplex(int)


Multiplex is used like Listen() except you pass in a connected socket.  Usually this function is used in multithread servers.  You first init a listen() on a socket, then when you perform an accept() you get a new socket handle.  At this point you would fork (or create a thread), and then pass the new socket handle to the Multiplex function.  The multiplex function will then attempt to negotiate a DICOM association.


BOOL
Read(DICOMObject
*)


Read an entire DICOM Object from the network (blocking)


BOOL
Write(DICOMCommandObject
*)


BOOL
Write(DICOMDataObject
*)


Write an entire DICOM object to the network.

Association Parameter Checking:

virtual
BOOL
CanYouHandleTransferSyntax(TransferSyntax &)


Determine whether the TransferSyntax extension can handle the given UID.


virtual
BOOL
ShouldIAcceptRemoteApTitle(BYTE
*)


Determine whether to accept / reject the remote ACR-NEMA address


virtual
BOOL
ShouldIAcceptLocalApTitle(BYTE *)


Determine whether to accept / reject the local ACR-NEMA address


virtual
BOOL
ShouldIAcceptApplicationContext(ApplicationContext 


&)


Determine whether to accept / reject the proposed Application Context


virtual
BOOL
ShouldIAcceptPresentationContext 





(PresentationContext &, PresentationContextAccept &)


Determine whether to accept the Presentation Context, and construct the Presentation Context accept.  A derived class should not (in most cases) overload this function.  The default implementation breaks down the parameters and passes them for checking to the derived class anyway.


virtual
BOOL
ShouldIAcceptAbstractSyntax(AbstractSyntax &)


Determine whether to accept / reject the proposed abstract syntax.


virtual
BOOL
AddTransferSyntaxs(PresentationContext &)


Add all known transfer syntaxs to a given presentation context.


virtual
BOOL
GetImplementationClass(ImplementationClass &)


Set the outgoing implementation class


virtual
BOOL
GetImplementationVersion(ImplementationVersion &)


Set the outgoing implementation version.

Transfer Syntax Extension:

virtual
BOOL
ParseRawVRIntoDCM ( 







BYTE,
 LinkedBuffer &, DICOMObject *)


Parse Raw VR data streams into DICOM objects.  The BYTE corresponds to the PresentationContextID.  Use GetTransferSyntaxUID to obtain the UID for the given BYTE.  Then use the UID to determine the format of the incoming data.  The default implementation will understand DICOM Implicit Little Endian format.


virtual
BYTE
ParseDCMIntoRawVR(DICOMObject *, LinkedBuffer &)


Parse DICOM Object into raw VR data stream.  Return the PresentationContextID corresponding to the format of the data.  A return of 0 means error, and the association is dropped.  Put the raw data stream into the LinkedBuffer.  The default implementation parses into DICOM Implicit Little Endian format.


BYTE
GetPresentationContextID(UID &)


Obtain PresentationContextID from Transfer Syntax UID


BOOL
GetTransferSyntaxUID(BYTE, UID &)


Obtain Transfer Syntax UID from PresentationContextID


The following functions are used internally by ParseRawVRIntoDCM and ParseDCMIntoRaw.  They should not (normally) be accessed directly.  Internally, the Parse functions will “simple”illy encode/decode JPEG compressed transfer syntaxes.  If you want to add better support for JPEG, you will need to override the Parse entry points, and provide it.


Currently Explicit VR transfer syntax encoding/decoding is supported.  By default, it is disabled.  To use it, you will need override the AddTransferSyntaxs() function.  Also, if you are using an Explicit VR transfer syntax, you must load an RTC class, and RTC a DICOMObject before sending it.


virtual
BOOL
Implicit_ParseRawVRIntoDCM (






LinkedBuffer &, DICOMObject *);


virtual
BOOL
Implicit_ParseDCMIntoRawVR (






DICOMObject *, LinkedBuffer &);


virtual
BOOL
ImplicitLittleEndian_ParseRawVRIntoDCM (




LinkedBuffer &, DICOMObject *);


virtual
BOOL
ImplicitLittleEndian_ParseDCMIntoRawVR(




DICOMObject *, LinkedBuffer &);


virtual
BOOL
Explicit_ParseRawVRIntoDCM(






LinkedBuffer &, DICOMObject *);


virtual
BOOL
Explicit_ParseDCMIntoRawVR(






DICOMObject *, LinkedBuffer &);


virtual
BOOL
ExplicitLittleEndian_ParseRawVRIntoDCM(




LinkedBuffer &, DICOMObject *);


virtual
BOOL
ExplicitLittleEndian_ParseDCMIntoRawVR(




DICOMObject *, LinkedBuffer &);


virtual
BOOL
ExplicitBigEndian_ParseRawVRIntoDCM(




LinkedBuffer &, DICOMObject *);


virtual
BOOL
ExplicitBigEndian_ParseDCMIntoRawVR(




DICOMObject *, LinkedBuffer &);


virtual
BOOL
Dynamic_ParseRawVRIntoDCM(





LinkedBuffer &, DICOMObject *, UINT StartMode);


virtual
BOOL
Dynamic_ParseDCMIntoRawVR(





DICOMObject *, LinkedBuffer &, UINT StartMode);

CheckedPDU_Service Class

Purpose:
To provide a greater degree of security, and association checks.  This class allows you to specifiy at run-time what application titles, application entities, service classes, and transfer syntaxes to accept on incoming associations.

Theory:
Rather than hard code a series of MyPDU_Service classes (as was previously recommended), this is a general purpose checked PDU_Service.  The parameters for this class are read from a file.  Here is an example file:

#

# DICOM Application / sop / transfer UID list.

#

# This list is used by the CheckedPDU_Service ( "filename" ) service

# class.  All incoming associations will be verified against this

# file.

None




none




RemoteAE

None




none




LocalAE

DICOM




1.2.840.10008.3.1.1.1

application

Verification


1.2.840.10008.1.1


sop

#CRStorage



1.2.840.10008.5.1.4.1.1.1
sop

#CTStorage



1.2.840.10008.5.1.4.1.1.2
sop

#USMutliframeStorage

1.2.840.10008.5.1.4.1.1.3
sop

#MRStorage



1.2.840.10008.5.1.4.1.1.4
sop

#NMStorage



1.2.840.10008.5.1.4.1.1.5
sop

#USStorage



1.2.840.10008.5.1.4.1.1.6
sop

#SCStorage



1.2.840.10008.5.1.4.1.1.7
sop

#StandaloneOverlayStorage
1.2.840.10008.5.1.4.1.1.8
sop

#StandaloneCurveStorage

1.2.840.10008.5.1.4.1.1.9
sop

#StandaloneModalityLUTStorage
1.2.840.10008.5.1.4.1.1.10
sop

#StandaloneVOILUTStorage
1.2.840.10008.5.1.4.1.1.11
sop

#GEMRStorage


1.2.840.113619.4.2

sop

#GECTStorage


1.2.840.113619.4.3

sop

#PatientRootQuery


1.2.840.10008.5.1.4.1.2.1.1
sop

#PatientRootRetrieve

1.2.840.10008.5.1.4.1.2.1.2
sop

#StudyRootQuery


1.2.840.10008.5.1.4.1.2.2.1
sop

#StudyRootRetrieve

1.2.840.10008.5.1.4.1.2.2.2
sop

#PatientStudyOnlyQuery

1.2.840.10008.5.1.4.1.2.3.1
sop

#PatientStudyOnlyRetrieve
1.2.840.10008.5.1.4.1.2.3.2
sop

LittleEndianImplicit

1.2.840.10008.1.2


transfer

#LittleEndianExplicit

1.2.840.10008.1.2.1

transfer

#BigEndianExplicit

1.2.840.10008.1.2.2

transfer

#JPEGBaseLine1
1.2.840.10008.1.2.4.50
transfer LittleEndianImplicit

#JPEGExtended2and4 1.2.840.10008.1.2.4.51
transfer
LittleEndianImplicit

#JPEGExtended3and5 1.2.840.10008.1.2.4.52
transfer
LittleEndianImplicit

#JPEGSpectralNH6and8 1.2.840.10008.1.2.4.53
transfer LittleEndianImplicit

This class is derived from PDU_Service.  All methods/data mebers from PDU_Service that where public, are public here.  In addition there are the following functions:


CheckedPDU_Service ( char *filename)


Constructor.  You can pass in a NULL filename, in which case the CheckedPDU_Service class will behave exactly like PDU_Service.


InitializeFrom(char
*filename)


Read in a new database of sop, transfer, application titles.


ReleaseMemory()


This function clears the current database of sop, transfer, application entities.

Part 3: DICOM Objects
Introduction

VR Value Representation

A VR is the most basic form of an object of a DICOM object.  A VR consists of a unique Group / Element code, a length field, a type code, and the actual data.  Chapter 6 of the DICOM standard defines a "Data Dictionary".  This dictionary assigns attributes of patient demographics, image information, etc., a common Group / Element code.  (For instance, the patient name is given Group = 0x0010 and Element = 0x0010).  This implementation uses a base class "VR" for a common VR class.

IOD Information Object Definition

DICOM defines a set of data structures termed the “IOD”, for Information Object Defination.  These data structures come in two forms: normalized, and composite.  There is high level support for all DICOM Part 3 IOD modules.  This support comes in two forms:


“CO”
for Complex Object (corresponding to Normalized Objects)


“CCO” for Composite Complex Object (corresponding to Composite Objects)

The following is an Example of a Composite Object defination:


class
CTImageIODModule
:



public
CCO_AbstractClass



{



public:




CO_PatientModule

PatientModule;




CO_StudyModule

StudyModule;



};

The following is an example of a Normalized (Complex) object:


class
CO_PatientModule
:



public
CO_AbstractClass



{



public:




VR_PN

PatientsName;




VR_DA

PatientBirthdate;




.




.




.



};

This sort of access / class structure we define as "Complex Object support".  To understand the contrast (low-level object), one needs to understand how DICOM actually communicates data structures.  DICOM defines a VR data dictionary (chapter 6 of the DICOM standard).  This VR syntax assigns a unique Group / Element tag number for every VR field.  Therefore, one can think of a complex IOD being built up from several smaller unique VRs.  Hence, these two (given proper initial conditions of the data) are equivalent:


CTImageIODModule
CTImage;


DICOMDataObject

DDO;


char



s[128];


1)


CTImage.PatientModule.PatientsName.VMGet(0, s);


2)


memset( (void*) s, 0, 128);


memcpy((void*) s,

(void*) DDO.GetVR(0x0010, 0x0010)->Data,

(DDO.GetVR(0x0010, 0x0010)->Length);

The first method is not only more readable, but has the added advantage of supporting value-multiplicity (multiple entries per VR).  This VM support can be achieved with the first method, but requires several more lines of code.

Obviously, the first one is more readable, but is it more usable?  (Do we even need two views of the data?)  Well, here is where Chapter 8 of the DICOM standard comes to play.  When you physically transfer an IOD over a network link a DICOM transport must order the VR objects in acending group, and acending element order.  This means every DICOM transmission starts with the lowest tag, and ends with the highest tag of an IOD.  Hence, the "Complex View" does not work well for actual transmission.  Thus, the PDU_Service class only understands how to Read / Write low-level DICOM objects.

What is a low-level object?  There are two kinds of low-level DICOM objects:



DICOMCommandObject



DICOMDataObject

Really these are the same thing.  They are both derived from a base class "DICOMObject".  Henceforth we will use DICOMObject to mean both DICOMCommandObject, and DICOMDataObject.

A DICOMObject is a data structure that exists in two states.  The first state is "Unpackaged" and the second is "Packaged".  Basically, an object must be "packaged" before it can be transmitted over a network link.  It must be "unpackaged" while you add VRs to it.  How do you know what state it is in?  A DICOMObect initially is unpackaged.  So long as you are Push()'ing VR's (or other DICOMObjects) onto it, it remains unpackaged.  As soon as you try and Pop() an object from the DICOMObject, it becomes packaged, and will remain so until you Pop() the last object, at which time it will again become unpackaged.

Why two states?  Internally the object exists in two different data structures.  The first is as an array of pointers to priority queues.  The second is as an array of priority queues of priority queues.

Sequence Objects

Sequences are an unfortunate complexity to the DICOM standard.  This version of the DICOM transport protocol supports sequences as "Embedded DICOM Objects".  You create a sequence object by creating a second DICOMObject, and then Push()'ing it onto the first object.  For example:


DICOMDataObject
*DDO, *EDDO;


DDO = new DICOMDataObject;


DDO->Push(new VR(0x0010, 0x0010, 0, FALSE) );


DDO->Push(new VR(0x0010, 0x0020, 0, FALSE) );



EDDO = new DICOMDataObject;



EDDO->Push(new VR(0x0008, 0x0002, 0, FALSE) );


DDO->Push( EDDO );


DDO->Push(new VR(0x0010, 0x0030, 0, FALSE) );

What's gone on is you've "embedded" a DICOMObject inside another DICOMObject.  This is how sequence elements are handled.  Now, how to retrieve them:

void

PrintElements(DICOMObject
*DO)


{


UINT





Index;


Array < DICOMObject *> 

*ArrayPtr;


VR





*vr;


while ( vr = DO->Pop() )



{



PrintVR ( vr );



if (vr->SQObjectArray)




{




Index = 0;




ArrayPtr = (Array<DICOMObject *> *)





vr->SQObjectArray;




while ( Index < ArrayPtr->GetSize())





{





PrintElements (ArrayPtr->Get(Index));





++Index;





}




}



delete vr;



}


}

Currently, sequence objects are stored in an array inside the last VR pushed onto the DICOMObject.  I'd appreciate some feedback from users on whether you like this approach, and if not, how you might want to see it implemented.  I find it reasonable, but in many ways an ad-hoc hack.

A note on TCP/IP transporting:  Currently this protocol encodes sequence objects using (0xfffe, 0xe000) with an explicit length code.  Incoming sequences that are explicit or implicit lengths are supported.  Any level of depth of sequence objects is supported, both in the DICOMObject class, and in the PDU_Service transport class.

Caveats
Currently the DICOMObject class stores internally length codes which are hard coded to Implicit Little Endian transfer syntax.  In the future this will become a programmable feature (via a SetVROverhead() call), but this call returns FALSE in this alpha release.

VR Class

Purpose:

Provides a non-pure abstract class which stores the base level data of any DICOM object.

Theory:

Currently maintains the group, element, length and data portions of a value representation.  Support is not yet implemented for TypeCodes.  De-allocation of the data portion is programmable.  Stored inside each VR is a pointer to a sequence DICOMObject array.  This is to support sequence (embedded) objects.

Interface:

UINT16
Group


Group code for the VR.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR.  (always even numbered).


void
*Data


Pointer the data for the VR.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type (US, AE, etc).  Currently this value is not used.


VR ( UINT16, UINT16, UINT32, BOOL )


Create a VR with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR ( UINT16, UINT16, UINT32, void * )


Create a VR, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR ()


Create an empty VR.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR's Group / Element with another.


<


Operator.  Compares one VR's Group / Element with another.


==


Operator.  Compares one VR's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR from the VR passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.

DICOMObject Class

Purpose:

Provides the base class support for DICOMCommandObject and DICOMDataObject.

Theory:

A complex object that exists in two data structures.  The first is as an array of pointers to priority queues.  The second is of a priority queue.

Interface:

UINT32
Length


Length of the entire DICOM object.


BOOL
Push ( VR * )


Add a VR to the object.


BOOL
Push ( DICOMObject * )


Add a sequence (embedded) DICOMObject at the place of the last Push'ed VR.


VR
*Pop ()


Remove a VR from the object.


LE_UINT16
GetUINT16 ( UINT16, UINT16 )


Obtain the value of a US VR from inside the object.  The object must be unpackaged,, (i.e., not yet Pop()'ed).  The value returned is a Little-Endian data type.


VR
*GetVR ( UINT16, UINT16 )


Obtain a pointer to a VR inside the object.  The object must not be packaged.


BOOL

Reset()


Resets (clears) a DICOMObject.  Useful for servers, etc.

DICOMCommandObject Class

Purpose:

Provides a storage mechanism for DICOM Command messages (those with Group codes of 0x0000). 

Theory:

See DICOMObject Class

DICOMDataObject Class

Purpose:

Provides a storage mechanism for DICOM data messages (those with group codes not equal to 0x0000).

Theory:

See DICOMObject Class

VR_AE Class

Purpose:

Provides a high level VR which supports the AE VR data type.  The AE VR holds strings (of 16 bytes or less) which contain an Application Entity name.  Examples are “MYAE”. 

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_AE.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_AE.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_AE.  (always even numbered).


void
*Data


Pointer the data for the VR_AE.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_AE should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “AE”.


VR_AE ( UINT16, UINT16, UINT32, BOOL )


Create a VR_AE with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_AE ( UINT16, UINT16, UINT32, void * )


Create a VR_AE, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_AE ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_AE and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_AE ()


Create an empty VR_AE.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_AE()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_AE's Group / Element with another.


<


Operator.  Compares one VR_AE's Group / Element with another.


==


Operator.  Compares one VR_AE's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_AE back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_AE from the VR_AE passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the AE class.


BOOL
Get(char *)


Gets the data of the AE class.


BOOL
Set(UINT, char *)


Sets the data in VM position (0 based).


BOOL
Get(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘AE’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_AS Class

Purpose:

Provides a high level VR which supports the AS VR data type.  The AS class is a VR which holds fixed length strings (4 letters each) which hold an encoding of an age.  For instnace, 001M (1 Month), or 045Y (45 years).

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_AS.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_AS.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_AS.  (always even numbered).


void
*Data


Pointer the data for the VR_AS.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_AS should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “AS”.


VR_AS ( UINT16, UINT16, UINT32, BOOL )


Create a VR_AE with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_AS ( UINT16, UINT16, UINT32, void * )


Create a VR_AE, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_AS ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_AS and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_AS ()


Create an empty VR_AS.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_AS()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_AS's Group / Element with another.


<


Operator.  Compares one VR_AS's Group / Element with another.


==


Operator.  Compares one VR_AS's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_AS back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_AS from the VR_AS passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the AS class.


BOOL
Get(char *)


Gets the data of the AS class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘AS’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_AT Class

Purpose:

Provides a high level VR which supports the AT VR data type.  The AT datatype holds two 16 bit unsigned integers that hold a group, and element tag (respectivelly).

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_AT.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_AT.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_AT.  (always even numbered).


void
*Data


Pointer the data for the VR_AT.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_AT should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “AT”.


VR_AT ( UINT16, UINT16, UINT32, BOOL )


Create a VR_AE with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_AT ( UINT16, UINT16, UINT32, void * )


Create a VR_AE, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_AT ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_AT and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_AT ()


Create an empty VR_AT.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_AT()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_AT's Group / Element with another.


<


Operator.  Compares one VR_AT's Group / Element with another.


==


Operator.  Compares one VR_AT's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_AT back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_AT from the VR_AT passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the AT class.


BOOL
Get(void *)


Gets the data of the AT class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘AT’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_CS Class

Purpose:

Provides a high level VR which supports the CS VR data type.  The CS VR holds strings (of 16 bytes or less). 

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_CS.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_CS.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_CS.  (always even numbered).


void
*Data


Pointer the data for the VR_CS.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_CS should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “CS”.


VR_CS ( UINT16, UINT16, UINT32, BOOL )


Create a VR_CS with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_CS ( UINT16, UINT16, UINT32, void * )


Create a VR_CS, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_CS ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_CS and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_CS ()


Create an empty VR_CS.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_CS()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_CS's Group / Element with another.


<


Operator.  Compares one VR_CS's Group / Element with another.


==


Operator.  Compares one VR_CS's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_CS back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_CS from the VR_CS passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the CS class.


BOOL
Get(char *)


Gets the data of the CS class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘CS’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_DA Class

Purpose:

Provides a high level VR which supports the DA VR data type.  The DA VR holds  encoded dates.  Examples are “19950913” for September 13th, 1995.  The VR_DA class is backward compatible with older style ACR-NEMA date encodings (princply, things such as 1995.09.13).   The VR_DA class will accept incoming data of the older form, but will always return the newer form.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_DA.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_DA.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_DA.  (always even numbered).


void
*Data


Pointer the data for the VR_DA.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_DA should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “DA”.


VR_DA ( UINT16, UINT16, UINT32, BOOL )


Create a VR_DA with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_DA ( UINT16, UINT16, UINT32, void * )


Create a VR_DA, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_DA ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_DA and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_DA ()


Create an empty VR_DA.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_DA()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_DA's Group / Element with another.


<


Operator.  Compares one VR_DA's Group / Element with another.


==


Operator.  Compares one VR_DA's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_DA back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_DA from the VR_DA passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the DA class.


BOOL
Get(char *)


Gets the data of the DA class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘DA’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_DS Class

Purpose:

Provides a high level VR which supports the DS VR data type.  The DS VR holds decimal strings (of 16 bytes or less).

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_DS.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_DS.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_DS.  (always even numbered).


void
*Data


Pointer the data for the VR_DS.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_DS should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “DS”.


VR_DS ( UINT16, UINT16, UINT32, BOOL )


Create a VR_DS with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_DS ( UINT16, UINT16, UINT32, void * )


Create a VR_DS, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_DS ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_DS and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_DS ()


Create an empty VR_DS.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_DS()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_DS's Group / Element with another.


<


Operator.  Compares one VR_DS's Group / Element with another.


==


Operator.  Compares one VR_DS's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_DS back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_DS from the VR_DS passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the DS class.


BOOL
Get(char *)


Gets the data of the DS class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘DS’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_DT Class

Purpose:

Provides a high level VR which supports the DT VR data type.  The DT VR holds decimal strings (of 16 bytes or less).

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_DT.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_DT.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_DT.  (always even numbered).


void
*Data


Pointer the data for the VR_DT.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_DT should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “DT”.


VR_DT ( UINT16, UINT16, UINT32, BOOL )


Create a VR_DT with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_DT ( UINT16, UINT16, UINT32, void * )


Create a VR_DT, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_DT ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_DT and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_DT ()


Create an empty VR_DT.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_DT()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_DT's Group / Element with another.


<


Operator.  Compares one VR_DT's Group / Element with another.


==


Operator.  Compares one VR_DT's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_DT back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_DT from the VR_DT passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the DT class.


BOOL
Get(char *)


Gets the data of the DT class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘DT’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_FL Class

Purpose:

Provides a high level VR which supports the FL VR data type.  The FL VR holds floating point fixed single precision numbers (4 bytes each).  The format is IEEE 754:1985.  

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_FL.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_FL.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_FL.  (always even numbered).


void
*Data


Pointer the data for the VR_FL.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_FL should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “FL”.


VR_FL ( UINT16, UINT16, UINT32, BOOL )


Create a VR_FL with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_FL ( UINT16, UINT16, UINT32, void * )


Create a VR_FL, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_FL ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_FL and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_FL ()


Create an empty VR_FL.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_FL()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_FL's Group / Element with another.


<


Operator.  Compares one VR_FL's Group / Element with another.


==


Operator.  Compares one VR_FL's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_FL back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_FL from the VR_FL passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the FL class.


BOOL
Get(void *)


Gets the data of the FL class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘FL’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_FD Class

Purpose:

Provides a high level VR which supports the FD VR data type.  The FD VR holds floating point fixed double precision numbers (8 bytes each).  The format is IEEE 754:1985.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_FD.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_FD.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_FD.  (always even numbered).


void
*Data


Pointer the data for the VR_FD.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_FD should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “FD”.


VR_FD ( UINT16, UINT16, UINT32, BOOL )


Create a VR_FD with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_FD ( UINT16, UINT16, UINT32, void * )


Create a VR_FD, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_FD ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_FD and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_FD ()


Create an empty VR_FD.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_FD()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_FD's Group / Element with another.


<


Operator.  Compares one VR_FD's Group / Element with another.


==


Operator.  Compares one VR_FD's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_FD back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_FD from the VR_FD passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the FD class.


BOOL
Get(void *)


Gets the data of the FD class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘FD’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_IS Class

Purpose:

Provides a high level VR which supports the IS VR data type.  The IS VR holds integer strings (of 12 bytes or less).

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_IS.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_IS.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_IS.  (always even numbered).


void
*Data


Pointer the data for the VR_IS.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_IS should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “IS”.


VR_IS ( UINT16, UINT16, UINT32, BOOL )


Create a VR_IS with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_IS ( UINT16, UINT16, UINT32, void * )


Create a VR_IS, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_IS ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_IS and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_IS ()


Create an empty VR_IS.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_IS()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_IS's Group / Element with another.


<


Operator.  Compares one VR_IS's Group / Element with another.


==


Operator.  Compares one VR_IS's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_IS back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_IS from the VR_IS passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the IS class.


BOOL
Get(char *)


Gets the data of the IS class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘IS’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_LO Class

Purpose:

Provides a high level VR which supports the LO VR data type.  The LO VR holds text (up to 64 bytes).  The charactor ‘\’ may not be present in the string.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_LO.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_LO.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_LO.  (always even numbered).


void
*Data


Pointer the data for the VR_LO.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_LO should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “LO”.


VR_LO ( UINT16, UINT16, UINT32, BOOL )


Create a VR_LO with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_LO ( UINT16, UINT16, UINT32, void * )


Create a VR_LO, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_LO ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_LO and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_LO ()


Create an empty VR_LO.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_LO()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_LO's Group / Element with another.


<


Operator.  Compares one VR_LO's Group / Element with another.


==


Operator.  Compares one VR_LO's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_LO back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_LO from the VR_LO passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the LO class.


BOOL
Get(char *)


Gets the data of the LO class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘LO’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_LT Class

Purpose:

Provides a high level VR which supports the LT VR data type.  The LT VR holds text (up to 10240 bytes).  The charactor ‘\’ may be used, but the VMSet() call may not.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_LT.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_LT.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_LT.  (always even numbered).


void
*Data


Pointer the data for the VR_LT.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_LT should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “LT”.


VR_LT ( UINT16, UINT16, UINT32, BOOL )


Create a VR_LT with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_LT ( UINT16, UINT16, UINT32, void * )


Create a VR_LT, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_LT ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_LT and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_LT ()


Create an empty VR_LT.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_LT()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_LT's Group / Element with another.


<


Operator.  Compares one VR_LT's Group / Element with another.


==


Operator.  Compares one VR_LT's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_LT back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_LT from the VR_LT passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the LT class.


BOOL
Get(char *)


Gets the data of the LT class.


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘LT’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_OB Class

Purpose:

Provides a high level VR which supports the OB VR data type.  The OB VR holds bytes.  No ‘\’ is present since this is a binary VR type.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_OB.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_OB.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_OB.  (always even numbered).


void
*Data


Pointer the data for the VR_OB.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_OB should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “OB”.


VR_OB ( UINT16, UINT16, UINT32, BOOL )


Create a VR_OB with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_OB ( UINT16, UINT16, UINT32, void * )


Create a VR_OB, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_OB ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_OB and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_OB ()


Create an empty VR_OB.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_OB()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_OB's Group / Element with another.


<


Operator.  Compares one VR_OB's Group / Element with another.


==


Operator.  Compares one VR_OB's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_OB back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_OB from the VR_OB passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the OB class.


BOOL
Get(void *)


Gets the data of the OB class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘OB’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_OW Class

Purpose:

Provides a high level VR which supports the OW VR data type.  The OW VR holds words (unsigned 16 bit integers).  No ‘\’ is present since this is a binary VR type.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_OW.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_OW.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_OW.  (always even numbered).


void
*Data


Pointer the data for the VR_OW.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_OW should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “OW”.


VR_OW ( UINT16, UINT16, UINT32, BOOL )


Create a VR_OW with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_OW ( UINT16, UINT16, UINT32, void * )


Create a VR_OW, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_OW ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_OW and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_OW ()


Create an empty VR_OW.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_OW()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_OW's Group / Element with another.


<


Operator.  Compares one VR_OW's Group / Element with another.


==


Operator.  Compares one VR_OW's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_OW back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_OW from the VR_OW passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the OW class.


BOOL
Get(void *)


Gets the data of the OW class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘OW’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_PN Class

Purpose:

Provides a high level VR which supports the PN VR data type.  The PN VR holds patient names (up to 64 byts each).  This class has an algoritham behind it which will transform human-readable names into ANSI MSDS.  The algoritham has a number of different states which are to specific to mention here.  If there is an encoding of a name which this class does not handle, please email me a few examples.  I will try and integrate it.  Note the names going into and out of this VR should be normal human-readable names.  The VR_PN data type will always store the names as ANSI.

The algoritham can be overridded by parsing the name into ANSI form yourself.  Simply pass an ANSI name (with ^’s in it), and the algoritham is disabled.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_PN.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_PN.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_PN.  (always even numbered).


void
*Data


Pointer the data for the VR_PN.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_PN should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “PN”.


VR_PN ( UINT16, UINT16, UINT32, BOOL )


Create a VR_PN with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_PN ( UINT16, UINT16, UINT32, void * )


Create a VR_PN, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_PN ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_PN and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_PN ()


Create an empty VR_PN.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_PN()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_PN's Group / Element with another.


<


Operator.  Compares one VR_PN's Group / Element with another.


==


Operator.  Compares one VR_PN's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_PN back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_PN from the VR_PN passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the PN class.


BOOL
Get(char *)


Gets the data of the PN class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘PN’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_SH Class

Purpose:

Provides a high level VR which supports the SH VR data type.  The SH VR holds short strings up to 16 bytes.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_SH.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_SH.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_SH.  (always even numbered).


void
*Data


Pointer the data for the VR_SH.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_SH should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “SH”.


VR_SH ( UINT16, UINT16, UINT32, BOOL )


Create a VR_SH with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_SH ( UINT16, UINT16, UINT32, void * )


Create a VR_SH, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_SH ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_SH and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_SH ()


Create an empty VR_SH.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_SH()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_SH's Group / Element with another.


<


Operator.  Compares one VR_SH's Group / Element with another.


==


Operator.  Compares one VR_SH's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_SH back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_SH from the VR_SH passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the SH class.


BOOL
Get(char *)


Gets the data of the SH class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘SH’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_SL Class

Purpose:

Provides a high level VR which supports the SL VR data type.  The SL VR holds 32 bit signed long integers.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_SL.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_SL.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_SL.  (always even numbered).


void
*Data


Pointer the data for the VR_SL.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_SL should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “SL”.


VR_SL ( UINT16, UINT16, UINT32, BOOL )


Create a VR_SL with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_SL ( UINT16, UINT16, UINT32, void * )


Create a VR_SL, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_SL ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_SL and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_SL ()


Create an empty VR_SL.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_SL()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_SL's Group / Element with another.


<


Operator.  Compares one VR_SL's Group / Element with another.


==


Operator.  Compares one VR_SL's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_SL back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_SL from the VR_SL passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the SL class.


BOOL
Get(void *)


Gets the data of the SL class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘SL’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_SQ Class

Purpose:

Provides a high level VR which supports the SQ VR data type.  The SQ VR is a place holder for an object which contains an array of DICOM objects (sequences).  This 

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_SQ.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_SQ.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_SQ.  (always even numbered).


void
*Data


Pointer the data for the VR_SQ.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_SQ should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “SQ”.


VR_SQ ( UINT16, UINT16, UINT32, BOOL )


Create a VR_SQ with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_SQ ( UINT16, UINT16, UINT32, void * )


Create a VR_SQ, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_SQ ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_SQ and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_SQ ()


Create an empty VR_SQ.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_SQ()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_SQ's Group / Element with another.


<


Operator.  Compares one VR_SQ's Group / Element with another.


==


Operator.  Compares one VR_SQ's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_SQ back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_SQ from the VR_SQ passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.

VR_SS Class

Purpose:

Provides a high level VR which supports the SS VR data type.  The SS VR holds signed 16 bit integers.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_SS.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_SS.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_SS.  (always even numbered).


void
*Data


Pointer the data for the VR_SS.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_SS should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “SS”.


VR_SS ( UINT16, UINT16, UINT32, BOOL )


Create a VR_SS with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_SS ( UINT16, UINT16, UINT32, void * )


Create a VR_SS, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_SS ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_SS and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_SS ()


Create an empty VR_SS.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_SS()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_SS's Group / Element with another.


<


Operator.  Compares one VR_SS's Group / Element with another.


==


Operator.  Compares one VR_SS's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_SS back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_SS from the VR_SS passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the SS class.


BOOL
Get(void *)


Gets the data of the SS class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘SS’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_ST Class

Purpose:

Provides a high level VR which supports the ST VR data type.  The ST VR holds text (up to 1024 bytes).  The charactor ‘\’ may be used, but the VMSet() call may not.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_ST.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_ST.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_ST.  (always even numbered).


void
*Data


Pointer the data for the VR_ST.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_ST should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “ST”.


VR_ST ( UINT16, UINT16, UINT32, BOOL )


Create a VR_ST with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_ST ( UINT16, UINT16, UINT32, void * )


Create a VR_ST, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_ST ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_ST and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_ST ()


Create an empty VR_ST.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_ST()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_ST's Group / Element with another.


<


Operator.  Compares one VR_ST's Group / Element with another.


==


Operator.  Compares one VR_ST's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_ST back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_ST from the VR_ST passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the ST class.


BOOL
Get(char *)


Gets the data of the ST class.


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘ST’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_TM Class

Purpose:

Provides a high level VR which supports the TM VR data type.  The TM VR holds time strings of the form hhmmss.frac.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_TM.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_TM.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_TM.  (always even numbered).


void
*Data


Pointer the data for the VR_TM.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_TM should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “TM”.


VR_TM ( UINT16, UINT16, UINT32, BOOL )


Create a VR_TM with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_TM ( UINT16, UINT16, UINT32, void * )


Create a VR_TM, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_TM ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_TM and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_TM ()


Create an empty VR_TM.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_TM()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_TM's Group / Element with another.


<


Operator.  Compares one VR_TM's Group / Element with another.


==


Operator.  Compares one VR_TM's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_TM back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_TM from the VR_TM passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the TM class.


BOOL
Get(char *)


Gets the data of the TM class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘TM’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_UI Class

Purpose:

Provides a high level VR which supports the UI VR data type.  The UI VR holds unique identifiers.

Theory:

This class is derived from the base typeless VR class.

Interface:

UINT16
Group


Group code for the VR_UI.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_UI.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_UI.  (always even numbered).


void
*Data


Pointer the data for the VR_UI.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_UI should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “UI”.


VR_UI ( UINT16, UINT16, UINT32, BOOL )


Create a VR_UI with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_UI ( UINT16, UINT16, UINT32, void * )


Create a VR_UI, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_UI ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_UI and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_UI ()


Create an empty VR_UI.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_UI()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_UI's Group / Element with another.


<


Operator.  Compares one VR_UI's Group / Element with another.


==


Operator.  Compares one VR_UI's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_UI back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_UI from the VR_UI passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(char *)


Sets the data of the UI class.


BOOL
Get(char *)


Gets the data of the UI class.


BOOL
VMSet(UINT, char *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, char *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘UI’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_UL Class

Purpose:

Provides a high level VR which supports the UL VR data type.  The UL VR holds unsigned long 32 bit integers.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_UL.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_UL.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_UL.  (always even numbered).


void
*Data


Pointer the data for the VR_UL.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_UL should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “UL”.


VR_UL ( UINT16, UINT16, UINT32, BOOL )


Create a VR_UL with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_UL ( UINT16, UINT16, UINT32, void * )


Create a VR_UL, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_UL ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_UL and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_UL ()


Create an empty VR_UL.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_UL()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_UL's Group / Element with another.


<


Operator.  Compares one VR_UL's Group / Element with another.


==


Operator.  Compares one VR_UL's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_UL back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_UL from the VR_UL passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the UL class.


BOOL
Get(void *)


Gets the data of the UL class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘UL’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_US Class

Purpose:

Provides a high level VR which supports the US VR data type.  The US VR holds unsigned short 16 integers.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_US.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_US.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_US.  (always even numbered).


void
*Data


Pointer the data for the VR_US.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_US should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “US”.


VR_US ( UINT16, UINT16, UINT32, BOOL )


Create a VR_US with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NUSL).


VR_US ( UINT16, UINT16, UINT32, void * )


Create a VR_US, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_US ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_US and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_US ()


Create an empty VR_US.  Data = NUSL, Group = 0, Element = 0, Length = 0.


~VR_US()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_US's Group / Element with another.


<


Operator.  Compares one VR_US's Group / Element with another.


==


Operator.  Compares one VR_US's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_US back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_US from the VR_US passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the US class.


BOOL
Get(void *)


Gets the data of the US class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘US’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_XS Class

Purpose:

Provides a high level VR which supports the XS VR data type.  The XS VR holds signed/unsigned short 16 integers.  This VR is run-time configurable to be a US or SS data type.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_XS.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_XS.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_XS.  (always even numbered).


void
*Data


Pointer the data for the VR_XS.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_XS should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “US” or “SS”.


VR_XS ( UINT16, UINT16, UINT32, BOOL )


Create a VR_XS with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_XS ( UINT16, UINT16, UINT32, void * )


Create a VR_XS, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_XS ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_XS and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_XS ()


Create an empty VR_XS.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_XS()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_XS's Group / Element with another.


<


Operator.  Compares one VR_XS's Group / Element with another.


==


Operator.  Compares one VR_XS's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_XS back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_XS from the VR_XS passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the XS class.


BOOL
Get(void *)


Gets the data of the XS class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘US’ or ‘SS’)


BOOL
SetTypeCode (UINT16)


Gets the run time type of this VR (‘US’ or ‘SS’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.

VR_OX Class

Purpose:

Provides a high level VR which supports the OX VR data type.  The OX VR holds signed/unsigned short 16 integers.  This VR is run-time configurable to be a US or SS data type.

Theory:

This class is derived from the base typeless VR class.  This class will perform endian-swapping to / from the native architecture of the machine.  The arguments passed into / out-of it should be of native form.

Interface:

UINT16
Group


Group code for the VR_OX.  See Chapter 6: DICOM v3 draft.


UINT16
Element


Element code for the VR_OX.  See Chapter 6: DICOM v3 draft.


UINT32
Length


Length code for the VR_OX.  (always even numbered).


void
*Data


Pointer the data for the VR_OX.


BOOL
ReleaseMemory


Flag that indicates whether the destructor of the VR_OX should delete the member pointed to by data.


void
*SQObjectArray


Pointer to a (potential) array of sequenced DICOMObjects.  This value should be checked for any embedded DICOMObject.  Checking involves casting it to a type of Array < DICOMObject * > *.


UINT16
TypeCode


Value holding a 16 bit code for the VR type “US” or “SS”.


VR_OX ( UINT16, UINT16, UINT32, BOOL )


Create a VR_OX with code Group / Element, and Length.  The last parameter is a boolean operator.  TRUE indicates memory will be allocated (data will be valid), or FALSE, (data will be NULL).


VR_OX ( UINT16, UINT16, UINT32, void * )


Create a VR_OX, and mark the ReleaseMemory flag as TRUE, and set the data member to the value passed in as a parameter.


VR_OX ( UINT16, UINT16, UINT32, void *, BOOL )


Create a VR_OX and mark the ReleaseMemory flag to the BOOL parameter.  Set the data member to the void * parameter.


VR_OX ()


Create an empty VR_OX.  Data = NULL, Group = 0, Element = 0, Length = 0.


~VR_OX()


Destroy the VR and release memory associated with sequence objects, and delete the data section according to the ReleaseMemory flag.


>


Operator.  Compares one VR_OX's Group / Element with another.


<


Operator.  Compares one VR_OX's Group / Element with another.


==


Operator.  Compares one VR_OX's Group / Element with another.


BOOL
Reset()


Clears (resets) a VR_OX back to it’s initalized state.  Does not change the Group / Element data members.


BOOL
SetIf(VR
*vr)


Sets the VR_OX from the VR_OX passed in as a parameter, if the group/element codes are the same.  A return of TRUE from this call means the passed in VR has been “delete”’ed.  You should only pass in VR’s allocated with “new” to this function.


BOOL
Morph(DICOMObject
*)


If the “Valid” data member is TRUE, then the current VR is put into the DICOMObject passed in as a parameter.  Note this function, and the previous are a prelude to Complex-Object support.  In every day use you should not need to use them.


BOOL
Set(void *)


Sets the data of the OX class.


BOOL
Get(void *)


Gets the data of the OX class.


BOOL
VMSet(UINT, void *)


Sets the data in VM position (0 based).


BOOL
VMGet(UINT, void *)


Gets the data in VM position (0 based).


UINT16
GetTypeCode ()


Gets the run time type of this VR (‘US’ or ‘SS’)


BOOL
SetTypeCode (UINT16)


Gets the run time type of this VR (‘US’ or ‘SS’)


UINT32
GetSetSize ()


Returns the fixed size (if any) of this data element.  For variable length VR types, this procedure returns 0.
RTC Class

Purpose:
Run-Time-Classing of VR elements.  This allows one to lookup a Group, Element pair, and obtain the description, and type-code for a VR.

Theory:
Interface:
An RTC database is loaded from a text file.  This file has the following format:

{ 0x0000, 0x0000, 'UL', "Group 0000 Length" },

{ 0x0000, 0x0001, 'UL', "Group 0000 Length to End (RET)" },

{ 0x0000, 0x0002, 'UI', "Affected SOP Class UID" },

{ 0x0000, 0x0003, 'UI', "Requested SOP Class UID" },

{ 0x0000, 0x0010, 'SH', "Recognition Code (RET)" },

.

.

.

Blank, or incomplete lines are ignored.  This file has the same format as the file that can be found on: ftp://zippy.nih.gov/pub/nihimage/documents/dicom-dict.txt

RTC (BOOL = TRUE, char * = NULL)


Constructor.  The first aurgument is a flag for “Carry Descriptions”.  This allows you to specify whether the RTC should store (and allocate memorry for) descriptions of VR codes.  In certain instances where you want to conserve memory, set this flag to FALSE.  The second argument is the filename to load.  Both arguments need not be supplied.


~RTC ()


Destructor.


BOOL
AttachRTC (char
*filename)


Load an RTC database.


BOOL
DetachRTC ()


Clear the RTC database.


BOOL
RunTimeClass(DICOMObject
*)


Type-code all known VR’s in the DICOMObject.  Note, all VR points will be changed in the DICOMObject.  Hence, old VR points will be invalid.


BOOL
RunTimeClass(VR
*)


Type-code a VR.


UINT16
RunTimeClass(UINT16, UINT16, char *)


Look up a group/element pair, and obtain the type-code, and (if the char * is non-NULL), the description of the group/element.  A value of 0 will be returned if the VR is not known.

Normalized Complex Object Classes

Normalized objects are representations of single IOD descriptions from Part 3 of the DICOM standard.  The class descriptions that follow are abbreviations.  To read them transform each line:

CO_PatientRelationshipModule

SQ
ReferencedVisitSequence
0x0008
0x1125

Into:

class
CO_PatientRelationshipModule
:


public
CO_Abstract


{


public:


VR_SQ
ReferencedVisitSequence;


.


.


.

public:


BOOL


Set ( DICOMDataObject * );


DICOMDataObject
*Get ();


BOOL


Reset ();


};

The procedure Set () will take only the elements defined in the module description below, and remove them from the DICOMDataObject.

The procedure Get () will return a DICOMDataObject from only the defined (used) elements from the description below.

The procedure Reset () will reset the Normalized object back to the initial state.

// C.2.1

CO_PatientRelationshipModule

SQ
ReferencedVisitSequence
0x0008
0x1125

SQ
ReferencedStudySequence
0x0008
0x1110

SQ
ReferencedPatientAliasSOPInstanceUIDs
0x0038
0x0004

end

CO_ReferencedVisitSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

CO_ReferencedPatientAliasSOPInstanceUIDs

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.2.2

CO_PatientIdentificationModule

PN
PatientsName
0x0010
0x0010

LO
PatientID
0x0010
0x0020

LO
IssuerOfPatientID
0x0010
0x0021

LO
OtherPatientIDs
0x0010
0x1000

PN
OtherPatientNames
0x0010
0x1001

PN
PatientsMaidenName
0x0010
0x1005

PN
PatientsMothersMaidenName
0x0010
0x1060

LO
MedicalRecordLocator
0x0010
0x1090

end

// C.2.3

CO_PatientDemographicModule

LO
PatientsAddress
0x0010
0x1040

LO
RegionOfResidence
0x0010
0x2152

LO
CountryOfResidence
0x0010
0x2150

SH
PatientsTelephoneNumbers
0x0010
0x2154

DA
PatientsBirthDate
0x0010
0x0030

TM
PatientsBirthTime
0x0010
0x0032

SH
EthnicGroup
0x0010
0x2160

CS
PatientsSex
0x0010
0x0040

DS
PatientsSize
0x0010
0x1020

DS
PatientsWeight
0x0010
0x1030

LO
MilitaryRank
0x0010
0x1080

LO
BranchOfService
0x0010
0x1081

SQ
PatientsInsurencePlanCodeSequence
0x0010
0x0050

LO
PatientsRelgiousPreference
0x0010
0x21f0

LT
PatientComments
0x0010
0x4000

end

CO_PatientsInsurencePlanCodeSequence

SH
CodeValue
0x0008
0x0100

SH
CodingSchemeDesignator
0x0008
0x0102

LO
CodeMeaning
0x0008
0x0104

end

// C.2.4

CO_PatientMedicalModule

LO
PatientState
0x0038
0x0500

US
PregnancyStatus
0x0010
0x21c0

LO
MedicalAlerts
0x0010
0x2000

LO
ContrastAllergies
0x0010
0x2110

LO
SpecialNeeds
0x0038
0x0050

DA
LastMenstrualDate
0x0010
0x21d0

CS
SmokingStatus
0x0010
0x21a0

LT
AdditionalPatientHistory
0x0010
0x21b0

end

// C.3.1

CO_VisitRelationshipModule

SQ
ReferencedStudySequence
0x0008
0x1110

SQ
ReferencedPatientSequence
0x0008
0x1120

end

// C.3.2

CO_VisitIdentificationModule

LO
InsitutionName
0x0008
0x0080

ST
InsitutionAddress
0x0008
0x0081

SQ
InsitutionCodeSequence
0x0008
0x0082

LO
AdmissionID
0x0038
0x0010

LO
IssuerOfAdmissionID
0x0038
0x0011

end

CO_InsitutionCodeSequence

SH
CodeValue
0x0008
0x0100

SH
CodingSchemeDesignator
0x0008
0x0102

LO
CodeMeaning
0x0008
0x0104

end

// C.3.3

CO_VisitStatusModule

CS
VisitStatusID
0x0038
0x0008

LO
CurrentPatientLocation
0x0038
0x0300

LO
PatientsInsitionResidence
0x0038
0x0400

LT
VisitComments
0x0038
0x4000

end

// C.3.4

CO_VisitAdmissionModule

DA
AdmittingDate
0x0038
0x0020

TM
AdmittingTime
0x0038
0x0021

LO
RouteOfAdmissions
0x0038
0x0016

LO
AdmittingDiagnosisDescription
0x0008
0x1080

SQ
AdmittingDiagnosisCodeSequence
0x0008
0x1084

PN
ReferringPhysiciansName
0x0008
0x0090

ST
ReferringPhysiciansAddress
0x0008
0x0092

SH
ReferringPhysiciansPhoneNumbers
0x0008
0x0094

end

CO_AdmittingDiagnosisCodeSequence

SH
CodeValue
0x0008
0x0100

SH
CodingSchemeDesignator
0x0008
0x0102

LO
CodeMeaning
0x0008
0x0104

end

// C.3.5

CO_VisitDischargeModule

DA
DischargeDate
0x0038
0x0030

TM
DischargeTime
0x0038
0x0032

LO
DischargeDiagnosisDescription
0x0038
0x0040

SQ
DischargeDiagnosisCodeSequence
0x0038
0x0044

end

CO_DischargeDiagnosisCodeSequence

SH
CodeValue
0x0008
0x0100

SH
CodingSchemeDesignator
0x0008
0x0102

LO
CodeMeaning
0x0008
0x0104

end

// C.3.6

CO_VisitSchedulingModule

DA
ScheduledAdmissionDate
0x0038
0x001A

TM
ScheduledAdmissionTime
0x0038
0x001B

DA
ScheduledDischargeDate
0x0038
0x001C

TM
ScheduledDischargeTime
0x0038
0x001D

LO
ScheduledPatientInsitutionResidence
0x0038
0x001E

end

// C.4.1

CO_StudyRelationshipModule

SQ
ReferencedVisitSequence
0x0008
0x1125

SQ
ReferencedPatientSequence
0x0008
0x1155

SQ
ReferencedResultsSequence
0x0008
0x1100

SQ
ReferencedStudyComponentSequence
0x0008
0x1100

UI
StudyInstanceUID
0x0020
0x000D

SH
AccessionNumber
0x0008
0x0050

end

CO_ReferencedResultsSequence


UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

CO_ReferencedStudyComponentSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.4.2

CO_StudyIdentificationMoudle

SH
StudyID
0x0020
0x0010

LO
StudyIDIssuer
0x0032
0x0012

IS
OtherStudyNumbers
0x0020
0x1070

end

// C.4.3

CO_StudyModule

CS
StudyStatusID
0x0032
0x000A

CS
StudyPriorityID
0x0032
0x000C

LT
StudyComments
0x0032
0x4000

end

// C.4.4

CO_StudySchedulingModule

DA
ScheduledStudyStartDate
0x0032
0x1000

TM
ScheduledStudyStartTime
0x0032
0x1001

DA
ScheduledStudyStopDate
0x0032
0x1010

TM
ScheduledStudyStopTime
0x0032
0x1011

LO
ScheduledStudyLocation
0x0032
0x1020

AE
ScheduledStudyLocationAETitle
0x0032
0x1021

LO
ReasonForStudy
0x0032
0x1030

PN
RequestingPhysician
0x0032
0x1032

LO
RequestingService
0x0032
0x1033

LO
RequestedProcedureDescription
0x0032
0x1060

SQ
RequestedProcedureCodeSequence
0x0032
0x1064

LO
RequestedContrastAgent
0x0032
0x1070

end

CO_RequestedProcedureCodeSequence

SH
CodeValue
0x0008
0x0100

SH
CodingSchemeDesignator
0x0008
0x0102

LO
CodeMeaning
0x0008
0x0104

end

// C.4.5

CO_StudyAcquisitionModule

DA
StudyArrivalDate
0x0032
0x1080

TM
StudyArrivalTime
0x0032
0x1081

DA
StudyDate
0x0008
0x0020

TM
StudyTime
0x0008
0x0030

DA
StudyCompletionDate
0x0032
0x1050

TM
StudyCompletionTime
0x0032
0x1051

DA
StudyVerifiedDate
0x0032
0x0032

TM
StudyVerifiedTime
0x0032
0x0033

IS
SeriesInStudy
0x0020
0x1000

IS
AcquisitionsInStudy
0x0020
0x1004

end

// C.4.6

CO_StudyReadModule

PN
NameOfPhysiciansReadingStudy
0x0008
0x1060

DA
StudyReadDate
0x0032
0x0034

TM
StudyReadTime
0x0032
0x0035

end

// C.4.7

CO_StudyComponentModule

SH
StudyID
0x0020
0x0010

UI
StudyInstanceUID
0x0020
0x000D

SQ
ReferencedSeriesSequence
0x0008
0x1115

end

CO_ReferencedSeriesSequence

DA
SeriesDate
0x0008
0x0021

TM
SeriesTime
0x0008
0x0031

UI
SeriesInstanceUID
0x0020
0x000E

AE
RetrieveAETitle
0x0008
0x0054

SH
StorageMediaFileSetID
0x0088
0x0130

UI
StorageMediaFileSetUID
0x0088
0x0140

SQ
ReferencedImageSequence
0x0008
0x1120

end

// C.4.8

CO_StudyComponentRelationshipModule

SQ
ReferencedStudySequence
0x0008
0x1110

end

// C.4.9

CO_StudyComponentStatusModule

CS
Modality
0x0008
0x0060

LO
StudyDescription
0x0008
0x1030

SQ
ProcedureCodeSequence
0x0008
0x1032

PN
AttendingPhysiciansName
0x0008
0x1050

CS
StudyComponentStatusID
0x0032
0x1055

end

CO_ProcedureCodeSequence

SH
CodeValue
0x0008
0x0100

SH
CodingSchemeDesignator
0x0008
0x0102

LO
CodeMeaning
0x0008
0x0104

end

// C.5.1

CO_ResultsRelationshipModule

SQ
ReferencedInterpretationSequence
0x4008
0x0050

end

CO_ReferencedInterpretationSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.5.2

CO_ResultsIdentificationModule

SH
ResultsID
0x4008
0x0040

LO
ResultsIDIssuer
0x4008
0x0042

end

// C.5.3


CO_ResultsImpressionsModule

ST
Impressions
0x4008
0x0300

end

// C.6.1

CO_InterpretationRelationshipModule

SQ
ReferencedResultsSequence
0x0008
0x1100

end

// C.6.2

CO_InterpretationIdentificationModule

SH
InterpretationID
0x4008
0x0200

LO
InterpretationIDIssuer
0x4008
0x0202

end

// C.6.3

CO_InterpretationStateModule

CS
InterpretationTypeID
0x4008
0x0210

CS
InterpretationStatusID
0x4008
0x0212

end

// C.6.4

CO_InterpretationRecordingModule

DA
InterpretationRecordedDate
0x4008
0x0100

TM
InterpretationRecordedTime
0x4008
0x0101

PN
InterpretationRecorder
0x4008
0x0102

LO
ReferenceToRecordedSound
0x4008
0x0103

end

// C.6.5

CO_InterpretationTranscriptionModule

DA
InterpretationTranscriptionDate
0x4008
0x0108

TM
InterpretationTranscriptionTime
0x4008
0x0109

PN
InterpretationTranscriptionTranscriber
0x4008
0x010A

ST
InterpretationTranscriptionText
0x4008
0x010B

PN
InterpretationAuthor
0x4008
0x010C

end

// C.6.6

CO_InterpretationApprovalModule

SQ
InterpretationApproverSequence
0x4008
0x0111

LT
InterpretationDiagnosisDescription
0x4008
0x0115

SQ
InterpretationDiagnosisCodesSequence
0x4008
0x0117

SQ
ResultsDistributionListSequence
0x4008
0x0118

end

CO_InterpretationApproverSequence

DA
InterpretationApprovalDate
0x4008
0x0112

TM
InterpretationApprovalTime
0x4008
0x0113

PN
PhysiciansApprovingInterpretation
0x4008
0x0114

end

CO_InterpretationDiagnosisCodesSequence

SH
CodeValue
0x0008
0x0100

SH
CodingSchemeDesignator
0x0008
0x0102

LO
CodeMeaning
0x0008
0x0104

end

CO_ResultsDistributionListSequence

PN
DistributionName
0x4008
0x0119

LO
DistributionAddress
0x4008
0x011A

end

// C.7.1

CO_PatientModule

PN
PatientsName
0x0010
0x0010

LO
PatientID
0x0010
0x0020

DA
PatientsBirthDate
0x0010
0x0030

CS
PatientsSex
0x0010
0x0040

SQ
ReferencedPatientSequence
0x0008
0x1120

TM
PatientsBirthTime
0x0010
0x0032

LO
OtherPatientID
0x0010
0x1000

PN
OtherPatientNames
0x0010
0x1001

SH
EthnicGroup
0x0010
0x2160

LT
PatientComments
0x0010
0x4000

end

CO_ReferencedPatientSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.7.2.1

CO_GeneralStudyModule

UI
StudyInstanceUID
0x0020
0x000D

DA
StudyDate
0x0008
0x0020

TM
StudyTime
0x0008
0x0030

PN
ReferringPhysiciansName
0x0008
0x0090

SH
StudyID
0x0020
0x0010

SH
AccessionNumber
0x0008
0x0050

LO
StudyDescription
0x0008
0x1030

PN
NameOfPhysiciansReadingStudy
0x0008
0x1060

SQ
ReferencedStudySequence
0x0008
0x1110

end

CO_ReferencedStudySequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.7.2.2

CO_PatientStudyModule

LO
AdmittingDiagnosesDescription
0x0008
0x1080

AS
PatientsAge
0x0010
0x1010

DS
PatientsSize
0x0010
0x1020

DS
PatientsWeight
0x0010
0x1030

SH
Occupation
0x0010
0x2180

LT
AdditionalPatientsHistory
0x0010
0x21B0

end

// C.7.3.1

CO_GeneralSeriesModule

CS
Modality
0x0008
0x0060

UI
SeriesInstanceUID
0x0020
0x000E

IS
SeriesNumber
0x0020
0x0011

CS
Laterality
0x0020
0x0060

DA
SeriesDate
0x0008
0x0021

TM
SeriesTime
0x0008
0x0031

PN
PerformingPhysiciansName
0x0008
0x1050

LO
ProtocolName
0x0018
0x1030

LO
SeriesDescription
0x0008
0x103E

PN
OperatorsName
0x0008
0x1070

SQ
ReferenedStudyComponentSequence
0x0008
0x1111

CS
BodyPartExamined
0x0018
0x0015

CS
PatientPosition
0x0018
0x5100

XS
SmallestPixelValueInSeries
0x0028
0x0108

XS
LargestPixelValueInSeries
0x0028
0x0109

end

// C.7.4.1

CO_FrameOfReferenceModule

UI
FrameOfReferenceUID
0x0020
0x0052

LO
PositionReferenceIndicator
0x0020
0x1040

end

// C.7.5.1

CO_GeneralEquipmentModule

LO
Manufacturer
0x0008
0x0070

LO
InstitutionName
0x0008
0x0080

ST
InstitutionAddress
0x0008
0x0081

ST
StationName
0x0008
0x1010

LO
InstitutionalDepartmentName
0x0008
0x1040

LO
ManufacturersModelName
0x0008
0x1090

LO
DeviceSerialNumber
0x0018
0x1000

LO
SoftwareVersions
0x0018
0x1020

DS
SpatialResolution
0x0018
0x1050

DA
DateOfLastCalibration
0x0018
0x1200

TM
TimeOfLastCalibration
0x0018
0x1201

XS
PixelPaddingValue
0x0028
0x0120

end

// C.7.6.1

CO_GeneralImageModule

IS
ImageNumber
0x0020
0x0013

CS
PatientOrientation
0x0020
0x0020

DA
ImageDate
0x0008
0x0023

TM
ImageTime
0x0008
0x0033

CS
ImageType
0x0008
0x0008

IS
AcquisitionNumber
0x0020
0x0012

DA
AcquisitionDate
0x0008
0x0022

TM
AcquisitionTime
0x0008
0x0032

SQ
ReferencedImageSequence
0x0008
0x1140

ST
DerivationDescription
0x0008
0x2111

SQ
SourceImageSequence
0x0008
0x2112

IS
ImagesInAcquisition
0x0020
0x1002

LT
ImageComments
0x0020
0x4000

end

CO_SourceImageSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.7.6.2

CO_ImagePlaneModule

DS
PixelSpacing
0x0028
0x0030

DS
ImageOrientationPatient
0x0020
0x0037

DS
ImagePositionPatient
0x0020
0x0032

DS
SliceThickness
0x0018
0x0050

DS
SliceLocation
0x0020
0x1041

end

// C.7.6.3

CO_ImagePixelModule

US
SamplesPerPixel
0x0028
0x0002

CS
PhotometricInterpretation
0x0028
0x0004

US
Rows
0x0028
0x0010

US
Columns
0x0028
0x0011

US
BitsAllocated
0x0028
0x0100

US
BitsStored
0x0028
0x0101

US
HighBit
0x0028
0x0102

US
PixelRepresentation
0x0028
0x0103

OX
PixelData
0x7FE0
0x0010

US
PlanarConfiguration
0x0028
0x0006

IS
PixelAspectRatio
0x0028
0x0034

XS
SmallestImagePixelValue
0x0028
0x0106

XS
LargestImagePixelValue
0x0028
0x0107

XS
RedPaletteColorLookupTableDescriptor
0x0028
0x1101

XS
GreenPaletteColorLookupTableDescriptor
0x0028
0x1102

XS
BluePaletteColorLookupTableDescriptor
0x0028
0x1103

XS
RedPaletteColorLookupTableData
0x0028
0x1201

XS
GreenPaletteColorLookupTableData
0x0028
0x1202

XS
BluePaletteColorLookupTableData
0x0028
0x1203

end

// C.7.6.4

CO_ContrastBolusModule

LO
ContrastBolusAgent
0x0018
0x0010

LO
ContrastBolusRoute
0x0018
0x1040

DS
ContrastBolusVolume
0x0018
0x1041

TM
ContrastBolusStartTime
0x0018
0x1042

TM
ContrastBolusStopTime
0x0018
0x1043

DS
ContrastBolusTotalDose
0x0018
0x1044

end

// C.7.6.5

CO_CineModule

DS
FrameTime
0x0018
0x1063

DS
FrameTimeVector
0x0018
0x1065

IS
StartTrim
0x0008
0x2142

IS
StopTrim
0x0008
0x2143

IS
RecommendedDisplayFrameRate
0x0008
0x2144

IS
CineRate
0x0018
0x0040

DS
FrameDelay
0x0018
0x1066

DS
EffectiveDuration
0x0018
0x0072

IS
ActualFrameDuration
0x0018
0x1242

end

// C.7.6.6

CO_MultiframeModule

IS
NumberOfFrames
0x0028
0x0008

AT
FrameIncrementPointer
0x0028
0x0009

end

// C.7.7

CO_PatientSummaryModule

PN
PatientsName
0x0010
0x0010

LO
PatientID
0x0010
0x0020

end

// C.7.8

CO_StudyContentModule

SH
StudyID
0x0020
0x0010

UI
StudyInstanceUID
0x0020
0x000D

SQ
ReferencedSeriesSequence
0x0008
0x1115

end

CO_ReferencedImageSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferenceSOPInstanceUID
0x0008
0x1155

AE
RetrieveApplicationEntityTitle
0x0008
0x0054

SH
StorageMediaFileSetID
0x0088
0x0130

UI
StorageMediaFileSetUID
0x0088
0x0140

end

// C.8.1.1

CO_CRSeriesModule

CS
BodyPartExamined
0x0018
0x0015

CS
VeiwPosition
0x0018
0x5101

SH
FilterType
0x0018
0x1160

SH
CollimatorGridName
0x0018
0x1180

DS
FocalSpot
0x0018
0x1190

SH
PlateType
0x0018
0x1260

LO
PhosphorType
0x0018
0x1261

end

// C.8.1.2

CO_CRImageModule

DS
KVP
0x0018
0x0060

LO
PlateID
0x0018
0x1004

DS
DistanceSourceToDetector
0x0018
0x1110

DS
DistanceSourceToPatient
0x0018
0x1111

IS
ExposureTime
0x0018
0x1150

IS
XRayTubeCurrent
0x0018
0x1151

IS
Exposure
0x0018
0x1152

IS
GeneratorPower
0x0018
0x1170

LO
AcquisitionDeviceProcessingDescription
0x0018
0x1400

LO
AcquisitionDeviceProcessingCode
0x0018
0x1401

CS
CassetteOrientation
0x0018
0x1402

CS
CassetteSize
0x0018
0x1403

US
ExposuresOnPlate
0x0018
0x1404

IS
RelativeXRayExposure
0x0018
0x1405

DS
Sensitivity
0x0018
0x6000

end

// C.8.2.1

CO_CTImageModule

CS
ImageType
0x0008
0x0008

US
SamplesPerPixel
0x0028
0x0002

CS
PhotometricInterpretation
0x0028
0x0004

US
BitsAllocated
0x0028
0x0100

US
BitsStored
0x0028
0x0101

US
HighBit
0x0028
0x0102

DS
RescaleIntercept
0x0028
0x1052

DS
RescaleSlope
0x0028
0x1053

DS
KVP
0x0018
0x0060

IS
AcquisitionNumber
0x0020
0x0012

CS
ScanOptions
0x0018
0x0022

DS
DataCollectionDiameter
0x0018
0x0090

DS
ReconstructionDiameter
0x0018
0x1100

DS
DistanceSourceToDector
0x0018
0x1110

DS
DistanceSourceToPatient
0x0018
0x1111

DS
GantryDetectorTilt
0x0018
0x1111

DS
TableHeight
0x0018
0x1130

CS
RotationDirection
0x0018
0x1140

IS
ExposureTime
0x0018
0x1150

IS
XRayTubeCurrent
0x0018
0x1151

IS
Exposure
0x0018
0x1152

SH
FilterType
0x0018
0x1160

IS
GeneratorPower
0x0018
0x1170

DS
FocalSpot
0x0018
0x1190

SH
ConvolutionKernel
0x0018
0x1210

end

// C.8.3.1

CO_MRImageModule

CS
ImageType
0x0008
0x0008

US
SamplesPerPixel
0x0028
0x0002

CS
PhotometricInterpretation
0x0028
0x0004

US
BitsAllocated
0x0028
0x0100

SQ
ScanningSequence
0x0018
0x0020

CS
DequenceVariant
0x0018
0x0021

CS
ScanOptions
0x0018
0x0022

CS
MRAcquisitionType
0x0018
0x0023

DS
RepetitionTime
0x0018
0x0080

DS
EchoTime
0x0018
0x0081

IS
EchoTrainLength
0x0018
0x0091

DS
InversionTime
0x0018
0x0082

DS
TriggerTime
0x0018
0x1060

SH
SequenceName
0x0018
0x0024

CS
AngioFlag
0x0018
0x0025

DS
NumberOfAverages
0x0018
0x0083

DS
ImagingFrequency
0x0018
0x0084

SH
ImagedNucleus
0x0018
0x0085

IS
EchoNumber
0x0018
0x0086

DS
MagneticFieldStrength
0x0018
0x0087

DS
SpacingBetweenSlices
0x0018
0x0088

IS
NumberOfPhaseEncodingSteps
0x0018
0x0089

DS
PercentSampling
0x0018
0x0093

DS
PercentPhaseFieldOfView
0x0018
0x0094

DS
PixelBandwidth
0x0018
0x0095

IS
NominalInterval
0x0018
0x1062

CS
BeatRejectionFlag
0x0018
0x1080

IS
LowRRValue
0x0018
0x1081

IS
IntervalsAcquired
0x0018
0x1083

IS
InvervalsRejected
0x0018
0x1084

LO
PVCRejection
0x0018
0x1085

IS
SkipBeats
0x0018
0x1086

IS
HeartRate
0x0018
0x1088

IS
CardiacNumberOfImages
0x0018
0x1090

IS
TriggerWindow
0x0018
0x1094

DS
ReconstructionDiameter
0x0018
0x1100

SH
ReceivingCoil
0x0018
0x1250

SH
TransmittingCoil
0x0018
0x1251

US
AcquisitionMatrix
0x0018
0x1310

CS
PhaseEncodingDirection
0x0018
0x1312

DS
FlipAngle
0x0018
0x1312

DS
SAR
0x0018
0x1316

CS
VariableFlipAngleFlag
0x0018
0x1315

DS
dBdt
0x0018
0x1318

IS
TemporalPositionIdentifier
0x0020
0x0100

IS
NumberOfTemporalPositions
0x0020
0x0105

DS
TemporalResolution
0x0020
0x0110

end

// C.8.4.1

CO_NMSeriesModule

LO
Radionuclide
0x0018
0x0030

CS
NuclearMedicineSeriesType
0x0008
0x0042

IS
ScanVelocity
0x0018
0x1300

CS
WholeBodyTechnique
0x0018
0x1301

IS
ScanLength
0x0018
0x1302

LO
Radiopharmaceutical
0x0018
0x0031

DS
EnergyWindowCenterline
0x0018
0x0032

DS
EnergyWindowTotalWidth
0x0018
0x0033

LO
InterventionDrugName
0x0018
0x0034

TM
InterventionDrugStartTime
0x0018
0x0035

DS
EffectiveSeriesDuration
0x0018
0x0072

IS
SyringeCounts
0x0018
0x1045

LO
TriggerSourceOrType
0x0018
0x1061

LO
RadionuclideRoute
0x0018
0x1070

DS
RadionuclideVolume
0x0018
0x1071

TM
RadionuclideStartTime
0x0018
0x1072

TM
RadionuclideStopTime
0x0018
0x1073

DS
RadionuclideTotalDose
0x0018
0x1074

DS
GantryDetectorTilt
0x0018
0x1120

IS
IsotopeNumber
0x0020
0x0014

end

// C.8.4.2

CO_NMEquipmentModule

DS
CenterOfRotationOffset
0x0018
0x1145

CS
FieldOfViewShape
0x0018
0x1147

IS
FieldOfViewDimensions
0x0018
0x1149

SH
CollimatorGridName
0x0018
0x1180

CS
CollimatorType
0x0018
0x1181

IS
FocalDistance
0x0018
0x1182

DS
XFocusCenter
0x0018
0x1183

DS
YFocusCenter
0x0018
0x1184

end

// C.8.4.3

CO_NMImageModule

AT
FrameIncrementPointer
0x0028
0x0009

DS
ZoomFactor
0x0028
0x0031

IS
CountsAccumulated
0x0018
0x0070

SQ
ReferencedOverlaySequence
0x0008
0x1130

SQ
ReferencedCurveSequence
0x0008
0x1145

CS
AcquisitionTerminationCondition
0x0018
0x0071

DS
ReconstructionDiameter
0x0018
0x1100

DS
DistanceSourceToDetector
0x0018
0x1110

DS
TableHeight
0x0018
0x1130

DS
TableTraverse
0x0018
0x1131

DS
AngularPosition
0x0018
0x1141

DS
RadialPosition
0x0018
0x1142

SH
ConvolutionKernel
0x0018
0x1210

IS
ActualFrameDuration
0x0018
0x1242

IS
CountRate
0x0018
0x1243

LO
PreprocessingFunction
0x0018
0x5020

LO
PostprocessingFunction
0x0018
0x5021

IS
PhaseNumber
0x0020
0x0015

IS
IntervalNumber
0x0020
0x0016

IS
TimeSlotNumber
0x0020
0x0017

IS
AngleNumber
0x0020
0x0018

DS
ZoomCenter
0x0028
0x0032

CS
CorrectedImage
0x0028
0x0051

end

// C.8.4.4

CO_NMSPECTAcquisitionImageModule

AT
FrameIncrementPointer
0x0028
0x0009

DS
AngularStep
0x0018
0x1144

DS
ZoomFactor
0x0028
0x0031

DS
ScanArc
0x0018
0x1143

DS
ReconstructionDiameter
0x0018
0x1100

DS
DistanceSourceToDetector
0x0018
0x1110

DS
TableHeight
0x0018
0x1130

DS
TableTraverse
0x0018
0x1131

CS
RotationDirection
0x0018
0x1140

DS
AngularPosition
0x0018
0x1141

DS
RadialPosition
0x0018
0x1142

DS
RotationOffset
0x0018
0x1146

IS
AngleNumber
0x0020
0x0018

DS
ZoomCenter
0x0028
0x0032

end

// C.8.4.5

CO_NMMultigatedAcquisitionImageModule

AT
FrameIncrementPointer
0x0028
0x0009

LO
TriggerSourceORType
0x0018
0x1061

DS
FrameTime
0x0018
0x1063

DS
TriggerTime
0x0018
0x1060

IS
NominalInterval
0x0018
0x1062

LO
FramingType
0x0018
0x1064

CS
BeatRejectionFlag
0x0018
0x1080

IS
LowRRValue
0x0018
0x1081

IS
HighRRValue
0x0018
0x1082

IS
IntervalsAcquired
0x0018
0x1083

IS
IntervalsRejected
0x0018
0x1084

LO
PVCRejection
0x0018
0x1085

IS
SkipBeats
0x0018
0x1086

IS
HeartRate
0x0018
0x1088

IS
CardiacNumberOfImages
0x0018
0x1090

end

// C.8.5.1

CO_USFrameOfReferenceModule

UL
RegionLocationMinX0
0x0018
0x6018

UL
RegionLocationMinY0
0x0018
0x601A

UL
RegionLocationMaxX1
0x0018
0x601C

UL
RegionLocationMaxY1
0x0018
0x601E

US
PhysicalUnitsXDirection
0x0018
0x6024

US
PhysicalUnitsYDirection
0x0018
0x6026

FD
PhysicalDeltaX
0x0018
0x602C

FD
PhysicalDeltaY
0x0018
0x602E

SL
ReferencePixelX0
0x0018
0x6020

SL
ReferencePixelY0
0x0018
0x6022

FD
RefPixelPhysicalValueX
0x0018
0x6028

FD
RefPixelPhysicalValueY
0x0018
0x602A

end

// C.8.5.2

CO_USRegionCalibrationModule

SQ
SequenceOfUltrasoundRegions
0x0018
0x6011

end

CO_SequenceOfUltrasoundRegions

UL
RegionLocationMinX0
0x0018
0x6018

UL
RegionLocationMinY0
0x0018
0x601A

UL
RegionLocationMaxX1
0x0018
0x601C

UL
RegionLocationMaxY1
0x0018
0x601E

US
PhysicalUnitsXDirection
0x0018
0x6024

US
PhysicalUnitsYDirection
0x0018
0x6026

FD
PhysicalDeltaX
0x0018
0x602C

FD
PhysicalDeltaY
0x0018
0x602E

SL
ReferencePixelX0
0x0018
0x6020

SL
ReferencePixelY0
0x0018
0x6022

FD
RefPixelPhysicalValueX
0x0018
0x6028

FD
RefPixelPhysicalValueY
0x0018
0x602A

US
RegionSpatialFormat
0x0018
0x6012

US
RegionDataType
0x0018
0x6014

UL
RegionFlags
0x0018
0x6016

US
PixelComponentOrganization
0x0018
0x6044

UL
PixelComponentMask
0x0018
0x6046

UL
PixelComponentRangeStart
0x0018
0x6048

UL
PixelComponentRangeStop
0x0018
0x604A

US
PixelComponentPhysicalUnits
0x0018
0x604C

US
PixelComponentDataType
0x0018
0x604E

UL
NumberOfTableBreakPoints
0x0018
0x6050

UL
TableOfXBreakPoints
0x0018
0x6052

FD
TableOfYBreakPoints
0x0018
0x6054

UL
TransducerFrequency
0x0018
0x6030

UL
PulseRepetitionFrequency
0x0018
0x6032

FD
DopplerCorrectionAngle
0x0018
0x6034

FD
SteeringAngle
0x0018
0x6036

UL
DopplerSampleVolumeXPosition
0x0018
0x6038

UL
DopplerSampleVolumeYPosition
0x0018
0x603A

UL
TMLinePositionX0
0x0018
0x603C

UL
TMLinePositionY0
0x0018
0x603E

UL
TMLinePositionX1
0x0018
0x6040

UL
TMLinePositionY1
0x0018
0x6042

end

// C.8.5.3

CO_USImageModule

CS
PhotometricInterpretation
0x0028
0x0004

US
PixelRepresentation
0x0028
0x0103

AT
FrameIncrementPointer
0x0028
0x0009

CS
ImageType
0x0008
0x0008

IS
NumberOfStages
0x0008
0x2124

IS
NumberOfViewsInStage
0x0008
0x212A

SQ
ReferencedOverlaySequence
0x0008
0x1130

SQ
ReferencedCurveSequence
0x0008
0x1145

SH
StageName
0x0008
0x2120

IS
StageNumber
0x0008
0x2122

IS
ViewNumber
0x0008
0x2128

IS
NumberOfEventTimers
0x0008
0x2129

DS
EventElapsedTimes
0x0008
0x2130

LO
EventTimerNames
0x0008
0x2132

CS
TransducerPosition
0x0008
0x2200

CS
TransducerOrientation
0x0008
0x2204


CS
AnatomicStructure
0x0008
0x2208

DS
TriggerTime
0x0018
0x1060

IS
MonimalInterval
0x0018
0x1062

CS
BeatRejectionFlag
0x0018
0x1080

IS
LowRRValue
0x0018
0x1081

IS
HighRRValue
0x0018
0x1082

IS
HeartRate
0x0018
0x1088

SH
OutputPower
0x0018
0x5000

LO
TransducerDate
0x0018
0x5010

CS
TransducerType
0x0018
0x6031

DS
FocusDepth
0x0018
0x5012

LO
PreprocessingFunction
0x0018
0x5020

DS
MechanicalIndex
0x0018
0x5022

DS
BoneThermalIndex
0x0018
0x5024

DS
CranialThermalIndex
0x0018
0x5026

DS
SoftTissueThermalIndex
0x0018
0x5027

DS
SoftTissueFocusThermalIndex
0x0018
0x5028

DS
SoftTissueSurfaceThermalIndex
0x0018
0x5029

IS
DepthOfScanField
0x0018
0x5050

DS
ImageTransformationMatrix
0x0018
0x5210

DS
ImageTranslationVector
0x0018
0x5212

end

CO_ReferencedCurveSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.8.6.1

CO_SCEquipmentModule

CS
ConversionType
0x0008
0x0064

CS
Modality
0x0008
0x0060

LO
SecondaryCaptureDeviseID
0x0018
0x1010

LO
SecondaryCaptureDeviceManufacturer
0x0018
0x1016

LO
SecondaryCaptureDeviceManufacturersModelName
0x0018
0x1018

LO
SecondaryCaptureDeviceSoftwareVersion
0x0018
0x1019

SH
VideoImageFormatAcquired
0x0018
0x1022

LO
DigitalImageFormatAcquired
0x0018
0x1023

end

// C.8.6.2

CO_SCImageModule

DA
DateOfSecondaryCapture
0x0018
0x1012

TM
TimeOfSecondaryCapture
0x0018
0x1014

US
OverlayNumber
0x0020
0x0022

DA
OverlayDate
0x0008
0x0024

TM
OverlayTime
0x0008
0x0034

SQ
ReferencedImageSequence
0x0008
0x1140

end

// C.9.1

CO_OverlayIdentificationModule


US
OverlayNumber
0x0020
0x0022


DA
OverlayDate
0x0008
0x0024


TM
OverlayTime
0x0008
0x0034


SQ
ReferenceImageSequence
0x0008
0x1140

end

// C.9.2

CO_OverlayPlaneModule

US
Rows
0x6001
0x0010

US
Columns
0x6001
0x0011

CS
OverlayType
0x6001
0x0040

SS
Origin
0x6001
0x0050

US
BitsAllocated
0x6001
0x0100

US
BitPosition
0x6001
0x0102

OW
OverlayData
0x6001
0x3000

IS
ROIArea
0x6001
0x1301

DS
ROIMean
0x6001
0x1302

DS
ROIStandardDeviation
0x6001
0x1303

US
OverlayDescriptorGray
0x6001
0x1100

US
OverlayDescriptorRed
0x6001
0x1101

US
OverlayDescriptorGreen
0x6001
0x1102

US
OverlayDescriptorBlue
0x6001
0x1103

US
OverlaysGray
0x6001
0x1200

US
OverlaysRed
0x6001
0x1201

US
OverlaysGreen
0x6001
0x1202

US
OverlaysBlue
0x6001
0x1203

end

// C.9.3

CO_MultiframeOverlayModule

IS
NumberOfFramesInOverlay
0x6001
0x0015

end

// C.10.1

CO_CurveIdentificationModule

US
CurveNumber
0x0020
0x0024

DA
CurveDate
0x0008
0x0025

TM
CurveTime
0x0008
0x0035

SQ
ReferencedImageSequence
0x0008
0x1140

SQ
ReferencedOverlaySequence
0x0008
0x1130

SQ
ReferencedCurveSequence
0x0008
0x1145

end

CO_ReferencedOverlaySequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.10.2

CO_CurveModule

US
CurveDimensions
0x5001
0x0005

US
NumberOfPoints
0x5001
0x0010

CS
TypeOfData
0x5001
0x0020

US
DataValueRepresentation
0x5001
0x0103

OX
CurveData
0x5001
0x3000

LO
CurveDescription
0x5001
0x0022

SH
AxisUnits
0x5001
0x0030

SH
AxisLabels
0x5001
0x0040

US
MinimumCoordinateValue
0x5001
0x0104

US
MaximumCoordinateValue
0x5001
0x0105

SH
CurveRange
0x5001
0x0106

US
CurveDataDescriptor
0x5001
0x0110

US
CoordinateStartValue
0x5001
0x0112

US
CoordinateStepValue
0x5001
0x0114

end

// C.10.3

CO_AudioModule

US
AudioType
0x5001
0x2000

US
AudioSampleFormat
0x5001
0x2002

US
NumberOfChannels
0x5001
0x2004

UL
NumberOfSamples
0x5001
0x2006

UL
SampleRate
0x5001
0x2008

UL
TotalTime
0x5001
0x200A

OX
AudioSampleData
0x5001
0x200C

SQ
ReferencedImageSequence
0x0008
0x1140

LT
AudioComments
0x5001
0x200E

end

// C.11.1

CO_ModalityLUTModule

SQ
ModalityLUTSequence
0x0028
0x3000

DS
RescaleIntercept
0x0028
0x1052

DS
RescaleSlope
0x0028
0x1053

LO
RescaleType
0x0028
0x1054

end

CO_ModalityLUTSequence

XS
LUTDescriptor
0x0028
0x3002

LO
LUTExplanation
0x0028
0x3003

LO
ModalityLUTType
0x0028
0x3004

XS
LUTData
0x0028
0x3006

end

// C.11.2

CO_VOILUTModule

SQ
VOILUTSequence
0x0028
0x3010

DS
WindowCenter
0x0028
0x1050

DS
WindowWidth
0x0028
0x1051

LO
WindowCenterAndWidthExplanation
0x0028
0x1055

end

CO_VOILUTSequence

XS
LUTDescriptor
0x0028
0x3002

LO
LUTExplanation
0x0028
0x3003

XS
LUTData
0x0028
0x3006

end

// C.11.3

CO_LUTIdentificationModule


IS
LUTNumber
0x0020
0x0026

SQ
ReferencedImageSequence
0x0008
0x1140

end

// C.12.1


CO_SOPCommonModule

UI
SOPClassUID
0x0008
0x0016

UI
SOPInstanceUID
0x0008
0x0018

CS
SpecificCharacterSet
0x0008
0x0005

DA
InstanceCreationDate
0x0008
0x0012

TM
InstanceCreationTime
0x0008
0x0013

UI
InstanceCreatorUID
0x0008
0x0014

end

// C.13.1

CO_BasicFilmSessionPresentationModule

IS
NumberOfCopies
0x2000
0x0010

CS
PrintPriority
0x2000
0x0020

CS
MediumType
0x2000
0x0030

CS
FilmDestination
0x2000
0x0040

LO
FilmSessionLabel
0x2000
0x0050

IS
MemoryAllocation
0x2000
0x0060

end

// C.13.2

CO_BasicFilmSessionRelationshipModule

SQ
ReferencedFilmBoxSequence
0x2000
0x0500

end

CO_ReferencedFilmBoxSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.13.3

CO_BasicFilmBoxPresentationModule

ST
ImageDisplayFormat
0x2010
0x0010

CS
AnnotationDisplayFormatID
0x2010
0x0030

CS
FilmOrientation
0x2010
0x0040

CS
FilmSizeID
0x2010
0x0050

CS
MagnificationType
0x2010
0x0060

CS
SmoothingType
0x2010
0x0080

CS
BorderDensity
0x2010
0x0100

CS
EmptyImageDensity
0x2010
0x0110

US
MinDensity
0x2010
0x0120

US
MaxDensity
0x2010
0x0130

CS
Trim
0x2010
0x0140

ST
ConfigurationInformation
0x2010
0x0150

end

// C.13.4

CO_BasicFilmBoxRelationshipModule

SQ
ReferencedFilmSessionSequence
0x2010
0x0500

SQ
ReferencedImageBoxSequence
0x2010
0x0510

SQ
ReferencedBasicAnnotationBoxSequence
0x2010
0x0520

end

CO_ReferencedFilmSessionSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

CO_ReferencedImageBoxSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

CO_ReferencedBasicAnnotationBoxSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.13.5

CO_ImageBoxPixelPresentationModule

US
ImagePosition
0x2020
0x0010

CS
Polarity
0x2020
0x0020

CS
MagnificationType
0x2010
0x0060

CS
SmoothingType
0x2010
0x0080

DS
RequestedImageSize
0x2020
0x0030

SQ
PreformattedGrayscaleImageSequence
0x2020
0x0110

SQ
PreformattedColorImageSequence
0x2020
0x0111

end

CO_PreformattedGrayscaleImageSequence

US
SamplesPerPixel
0x0028
0x0002

CS
PhotometricInterpretation
0x0028
0x0004

US
Rows
0x0028
0x0010

US
Columns
0x0028
0x0011

IS
PixelAspectRatio
0x0028
0x0034

US
BitsAllocated
0x0028
0x0100

US
BitsStored
0x0028
0x0101

US
HighBit
0x0028
0x0102

US
PixelRepresentation
0x0028
0x0103

OX
PixelData
0x7FE0
0x0010

end

CO_PreformattedColorImageSequence

US
SamplesPerPixel
0x0028
0x0002

CS
PhotometricInterpretation
0x0028
0x0004

US
PlanarConfiguration
0x0028
0x0006

US
Rows
0x0028
0x0010

US
Columns
0x0028
0x0011

IS
PixelAspectRatio
0x0028
0x0034

US
BitsAllocated
0x0028
0x0100

US
BitsStored
0x0028
0x0101

US
HighBit
0x0028
0x0102

US
PixelRepresentation
0x0028
0x0103

OX
PixelData
0x7FE0
0x0010

end

// C.13.6

CO_ImageBoxRelationshipModule

SQ
ReferencedImageSequence
0x0008
0x1140

SQ
ReferencedImageOverlayBoxSequence
0x2020
0x0130

SQ
ReferencedVOILUTSequence
0x2020
0x0140

end

CO_ReferencedImageOverlayBoxSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

UI
ReferencedFrameNumber
0x0008
0x1160

end

CO_ReferencedVOILUTSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155

end

// C.13.7

CO_BasicAnnotationPresentationModule

US
AnnotationPosition
0x2030
0x0010

LO
TextString
0x2030
0x0020

end

// C.13.8

CO_PrintJobModule

CS
ExecutionStatus
0x2100
0x0020

CS
ExecutionStatusInfo
0x2100
0x0030

DA
CreationDate
0x2100
0x0040

TM
CreationTime
0x2100
0x0050

CS
PrintPriority
0x2000
0x0020

LO
PrinterName
0x2110
0x0030

AE
Originator
0x2100
0x0070

end

// C.13.9

CO_PrinterModule

CS
PrinterStatus
0x2110
0x0010

CS
PrinterStatusInfo
0x2110
0x0020

LO
PrinterName
0x2110
0x0030

LO
Manufacturer
0x0008
0x0070

LO
ManufacturerModelName
0x0008
0x1090

LO
DeviceSerialNumber
0x0018
0x1000

LO
SoftwareVersions
0x0018
0x1020

DA
DateOfLastCalibration
0x0018
0x1200

TM
TimeOfLastCalibration
0x0018
0x1201

end

// C.13.10

CO_ImageOverlayBoxPresentationModule

SQ
ReferencedOverlayPlaneSequence
0x2040
0x0010

CS
OverlayMagnificationType
0x2040
0x0060

CS
OverlaySmoothingType
0x2040
0x0070

CS
OverlayForegroundDensity
0x2040
0x0080

CS
OverlayMode
0x2040
0x0090

CS
ThresholdDensity
0x2040
0x0100

end

CO_ReferencedOverlayPlaneSequence

UI
ReferencedSOPClassUID
0x0008
0x1150

UI
ReferencedSOPInstanceUID
0x0008
0x1155


UI
ReferencedOverlayPlaneGroups
0x2040
0x0011

end

Composite Complex Object Classes

Normalized objects are representations of single IOD descriptions from Part 3 of the DICOM standard.  The class descriptions that follow are abbreviations.  To read them transform each line:

CRImageIODModule


PatientModule



PatientModule

Into:

class
CRImageIODModule
:


public
CCO_Abstract


{


private:



DICOMDataObject
StrayVRs;


public:


CO_PatientModule


PatientModule;


.


.


.

public:


BOOL


Set ( DICOMDataObject * );


DICOMDataObject
*Get ();


BOOL


Reset ();


};

The procedure Set () will take only the elements defined in the module description below, and remove them from the DICOMDataObject.  All other VR’s in the DICOMDataObject will be dumped into StrayVRs.

The procedure Get () will return a DICOMDataObject from only the defined (used) elements from the description below.  Any elements in StrayVRs will also be placed in the resulting object.

The procedure Reset () will reset the Normalized object back to the initial state.

// A.2.3 CR Image

CRImageIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


CRSeriesModule



CRSeriesModule


GeneralEquipmentModule


GeneralEquipmentModule


GeneralImageModule


GeneralImageModule


ImagePixelModule



ImagePixelModule


ContrastBolusModule


ContrastBolusModule


CRImageModule



CRImageModule


OverlayPlaneModule


OverlayPlaneModule


CurveModule




CurveModule


ModalityLUTModule


ModalityLUTModule


VOILUTModule



VOILUTModule


SOPCommonModule


SOPCommonModule

end

CTImageIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


FrameOfReferenceModule


FrameOfReferenceModule


GeneralEquipmentModule


GeneralEquipmentModule


GeneralImageModule


GeneralImageModule


ImagePlaneModule



ImagePlaneModule


ImagePixelModule



ImagePixelModule


ContrastBolusModule


ContrastBolusModule


CTImageModule



CTImageModule


OverlayPlaneModule


OverlayPlaneModule


VOILUTModule



VOILUTModule


SOPCommonModule


SOPCommonModule

end

MRImageIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


FrameOfReferenceModule


FrameOfReferenceModule


GeneralEquipmentModule


GeneralEquipmentModule


GeneralImageModule


GeneralImageModule


ImagePlaneModule



ImagePlaneModule


ImagePixelModule



ImagePixelModule


ContrastBolusModule


ContrastBolusModule


MRImageModule



MRImageModule


OverlayPlaneModule


OverlayPlaneModule


VOILUTModule



VOILUTModule


SOPCommonModule


SOPCommonModule

end

NMImageIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


NMSeriesModule



NMSeriesModule


FrameOfReferenceModule


FrameOfReferenceModule

GeneralEquipmentModule


GeneralEquipmentModule

NMEquipmentModule


NMEquipmentModule


GeneralImageModule


GeneralImageModule


ImagePlaneModule



ImagePlaneModule


ImagePixelModule



ImagePixelModule


CineModule




CineModule


MultiframeModule



MultiframeModule


NMImageModule



NMImageModule


NMSPECTAcquisitionImageModule
NMSPECTAcquisitionImageModule


NMMultigatedAcquisitionImageModule NMMultigatedAcquisitionImageModule


OverlayPlaneModule


OverlayPlaneModule


MultiframeOverlayModule


MultiframeOverlayModule


CurveModule




CurveModule


VOILUTModule



VOILUTModule


SOPCommonModule


SOPCommonModule


OverlayIdentificationModule

OverlayIdentificationModule


CurveIdentificationModule


CurveIdentificationModule

end

USImageIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


FrameOfReferenceModule


FrameOfReferenceModule


USFrameOfReferenceModule

USFrameOfReferenceModule

GeneralEquipmentModule


GeneralEquipmentModule


ImagePixelModule



ImagePixelModule


ContrastBolusModule


ContrastBolusModule


USRegionCalibrationModule

USRegionCalibrationModule


USImageModule



USImageModule


OverlayPlaneModule


OverlayPlaneModule


VOILUTModule



VOILUTModule


SOPCommonModule


SOPCommonModule


CurveIdentificationModule


CurveIdentificationModule


CurveModule




CurveModule


AudioModule




AudioModule

end

USNMultiframeImageIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


FrameOfReferenceModule


FrameOfReferenceModule


USFrameOfReferenceModule

USFrameOfReferenceModule

GeneralEquipmentModule


GeneralEquipmentModule


ImagePixelModule



ImagePixelModule


ContrastBolusModule


ContrastBolusModule


CineModule




CineModule


MultiframeModule



MultiframeModule


USRegionCalibrationModule

USRegionCalibrationModule


USImageModule



USImageModule


OverlayPlaneModule


OverlayPlaneModule


VOILUTModule



VOILUTModule


SOPCommonModule


SOPCommonModule


CurveIdentificationModule


CurveIdentificationModule


CurveModule




CurveModule


AudioModule




AudioModule

end

SCImageIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


GeneralEquipmentModule


GeneralEquipmentModule


SCEquipmentModule


SCEquipmentModule


GeneralImageModule


GeneralImageModule


ImagePlaneModule



ImagePlaneModule


ImagePixelModule



ImagePixelModule


SCImageModule



SCImageModule


OverlayPlaneModule


OverlayPlaneModule


ModalityLUTModule


ModalityLUTModule


VOILUTModule



VOILUTModule


SOPCommonModule


SOPCommonModule

end

StandaloneOverlayIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


GeneralEquipmentModule


GeneralEquipmentModule


OverlayIdentificationModule

OverlayIdentificationModule


OverlayPlaneModule


OverlayPlaneModule


SOPCommonModule


SOPCommonModule

end

StandaloneCurveIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


GeneralEquipmentModule


GeneralEquipmentModule


CurveIdentificationModule


CurveIdentificationModule


CurveModule




CurveModule


SOPCommonModule


SOPCommonModule

end

StandaloneModalityLUTIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


GeneralEquipmentModule


GeneralEquipmentModule


ModalityLUTModule


ModalityLUTModule


LUTIdentificationModule


LUTIdentificationModule


SOPCommonModule


SOPCommonModule

end

StandaloneVOILUTIODModule


PatientModule



PatientModule


GeneralStudyModule


GeneralStudyModule


PatientStudyModule



PatientStudyModule


GeneralSeriesModule


GeneralSeriesModule


GeneralEquipmentModule


GeneralEquipmentModule


VOILUTModule



ModalityLUTModule


LUTIdentificationModule


LUTIdentificationModule


SOPCommonModule


SOPCommonModule

end

Part 4: Endian Architectures

The NEN Data Type

Introduction

Architecturally the DICOM standard is divided.  The lower level TCP/IP transport relies upon "Network Byte Order" Big-Endian numerics.  The default DICOM transfer syntax is Little-Endian.  When compiling with the DICOM library you must define a NATIVE_ENDIAN constant such that it has one of these values:


NATIVE_ENDIAN = LITTLE_ENDIAN = 1


NATIVE_ENDIAN = BIG_ENDIAN = 2

Setting this value correctly is very important.  If you compile with the wrong setting your software will behave very oddly.  (The most common behavior is if you have your software talk to itself on the same machine, it works fine; but, when you talk to another DICOM unit, everything goes wrong.)

There is a test program: getend.c.  To compile this file on UNIX using GCC do:



gcc -c getend.c



gcc -o getend getend.o

The program will print out the native endian architecture type of the machine, along with what constant setting to use.

From the NATIVE_ENDIAN setting the lower-level TCP/IP transport is properly configured, but, the DICOMObject (see Part 3 of this document) is inherently tied to the DICOM Little Endian transfer syntax.  How does one reconcile this on Big-Endian machines, and how do you write software which will recompile on both?

NEN (Native Endian Neutral) Data Types

When you include "dicom.hpp" you get eight endian specific datatypes.  They are termed "Native Endian Neutral", because if you declare an instance of a little endian type, it is stored in memory as little endian (and likewise for big endian).  The defined data types are:


LE_UINT16

Little Endian 16 bit unsigned integer


LE_UINT32

Little Endian 32 bit unsigned integer


LE_INT16

Little Endian 16 bit signed integer


LE_INT32

Little Endian 32 bit signed integer


BE_UINT16

Big Endian 16 bit unsigned integer


BE_UINT32

Big Endian 32 bit unsigned integer


BE_INT16

Big Endian 16 bit signed integer


BE_INT32

Big Endian 32 bit signed integer

All level 7 (DICOM Application) layer (and DIMSE-C service) routines should use xE_sINTb datatypes (x=Endian, s=un/signed, b=bit width).  These datatypes fully support the complete range of C/C++ operators: +, -, *, /, &, etc.

Caveats

Do not use NEN data types for math intensive operations.  In most cases if the endian type is non-native, the numeric is converted to native, the math operation performed and then converted back.  This is an obvious performance problem.

Do not assume that if you take the address of an NEN and further de-reference it, that that address will validly point to an NEN.  It does in fact point to an internal data-member of the NEN class.  Whether or not this will work is a compiler-dependent issue.  The reason is the & operator is overloaded and points to an internal data member.  This data member is the only object in the NEN class; however, certain compilers always generate a virtual-function table (and possibly other excess data) for classes.  Due to the over-loaded nature of the operator one cannot guarantee that a de-reference will always work.  To overcome this situation it is recommended that you work with native sINTb datatypes and only convert to xE_sINTb data types when creating VRs.  For most compilers you can code "non-portable" code and never worry about this issue; but it's always good practice to avoid non-portable code.

The result of sizeof() operations is not guaranteed.  Again, this is due to possible hidden data generated by the particular compiler you are using, as well as structure-padding.  It is recommended that, rather than hard-code sizes, you take the size of a native type instead.  For instance, the example program test.C has codes like:


LE_UINT16
CommandCode;


VR

*vr;


CommandCode = 0x8030;
// C-Echo Response


vr = new ( 0x0000, 0x0100, sizeof(UINT16), &CommandCode, FALSE);

Notes:

NEN data type support is via a "template" class.  This class is not a real C++ template.  The reason behind this is I wanted variable declarations to be simple.  For instance, this is one possible way of declaring endian numeric types:


FixedEndianType < UINT16 >
leValue16 ( LITTLE_ENDIAN ),








beValue16 ( BIG_ENDIAN );

Rather than add this complexity, NEN data types are instantiated like:


LE_UINT16




leValue16;


BE_UINT16




beValue16;

Part 5: DIMSE-C Service Classes

Introduction

Currently there are two princple ways to program using this DICOM TCP/IP implementation.  You can choose to code directly to the PDU interface (test.C/.cpp is an example of this), or you can use the pre-built higher level service objects.  These service objects comprise two more layers of abstraction away from the raw PDU interface.  This chapter deals with the first layer away: service methods.

There are eight service methods currently included in the package:


CEchoRQ


C-Echo Request


CEchoRSP


C-Echo Response


CStoreRQ


C-Store Request


CStoreRSP


C-Store Response


CFindRQ


C-Find Request


CFindRSP


C-Find Response


CMoveRQ


C-Move Request


CMoveRSP


C-Move Response

These service methods encapsulate all the "knowledge" of their associatied method type.  It should be noted that while each service provides two functions (Read / Write) these functions take different parameters for each object.

The behavior of each object is unique.  You should check this reference carefully for any side effects.  In general, you can rely on these commonalities:


* If the DICOMCommandObject is passed into a RSP/Write message, that object is usually distorted.  This is tru of CEchoRSP, CStoreRSP.  It is not true of CFindRSP and CMoveRSP.


* No object passed in as a parameter is ever deleted from the free store.  Objects passed in may be used and exist in a dissimilar state, but they are not de-allocated.  You are responsible for removing any dynamically allocated objects.


* Read() calls are boolean type operators.  They do not actually interrogate or generate any sort of response.  The code for a Read() basically checks the Command VR and returns a TRUE / FALSE on wheather is matches it's Command code.


* Write() calls generate the DICOMCommandObject.  They do not check the DICOMDataObject (if any) for correctness.  You are responsible for ensuring that the DICOMDataObject contains the correct data set.


* Every DIMSE-C Service object is an abstract base class.  You must derive an SOP class from the DIMSE-C Service class(es) before you can use them.  This is because each Write() call, calls a virtual function GetUID() to obtain the UID of the SOP class.

CEchoRQ Class

Purpose:

Encapsulate the inner workings of a CEchoRQ method (See Chapter 7 of the DICOM v3 draft).

Theory:
Relies upon DICOMObject classes (ie, not CCO's).

Interface:

BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.


BOOL
Write ( PDU_Service
*)


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().

CEchoRSP Class

Purpose:

Encapsulate the inner workings of a CEchoRSP method (See Chapter 7 of the DICOM v3 draft).  Response objects require that the DICOMCommandObject sent on the Request object be passed in as a parameter.  The response generated will depend on some of the values inside the DICOMCommandObject.

Theory:

Relies upon DICOMObject classes, (i.e., not CCO's).

Interface:

BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.


BOOL
Write ( PDU_Service
*, DICOMCommandObject
*)


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().

CStoreRQ Class

Purpose:

Encapsulate the inner workings of a CStoreRQ method (See Chapter 7 of the DICOM v3 draft).

Theory:

Relies upon DICOMObject classes, (i.e., not CCO's).

Interface:

BOOL
Read ( DICOMCommandObject
*,  DICOMDataObject *)


BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.  If you pass in a pointer to an allocated DICOMDataObject, and if this is a CStoreRQ message, the data section (i.e., the image) will be stored in the DICOMDataObject pointed to by the parameter.


BOOL
Write ( PDU_Service
*, DICOMDataObject
*)


BOOL
Write ( PDU_Service
*)


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().  If you pass in a DICOMDataObject, that object will be sent over the link.  The object will not be returned in a consistent state, (i.e., it will no longer be an image).  You must still delete the DICOMDataObject from the heap.  If you do not pass an object, then you are required to send a DICOMDataObject over the link before further communication can continue.  If you do not, the remote entity should flag an error and/or timeout and close the connection (eventually).

CStoreRSP Class

Purpose:

Encapsulate the inner workings of a CStoreRSP method (See Chapter 7 of the DICOM v3 draft).  Response objects require that the DICOMCommandObject sent on the Request object be passed in as a parameter.  The response generated will depend on some of the values inside the DICOMCommandObject.

Theory:

Relies upon DICOMObject classes (ie, not CCO's).

Interface:

BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.


BOOL
Write ( PDU_Service
*, DICOMCommandObject
*, UINT16)


BOOL
Write ( PDU_Service
*, DICOMCommandObject
*)


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().  If you pass in a UINT16, that value will be placed in the response code: 0x0000, 0x0900 of the CStoreRSP.  The default value is 0x0000 (Success).

CFindRQ Class

Purpose:

Encapsulate the inner workings of a CFindRQ method (See Chapter 7 of the DICOM v3 draft).

Theory:

Relies upon DICOMObject classes (ie, not CCO's).

Interface:

BOOL
Read (











DICOMCommandObject
*, PDU_Service
*,DICOMDataObject *)


BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.  If you pass in a pointer to an allocated DICOMDataObject, and if this is a CFindRQ message.  The data section (i.e.,  the image) will be stored in the DICOMDataObject pointed to by the parameter.


BOOL
Write ( PDU_Service
*, DICOMDataObject
*)


BOOL
Write ( PDU_Service
*)


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().  If you pass in a DICOMDataObject, that object will be sent over the link.  The object will not be returned in a consistent state, (i.e., it will no longer be an image).  You must still delete the DICOMDataObject from the heap.  If you do not pass an object, then you are required to send a DICOMDataObject over the link before further communication can continue.  If you do not, the remote entity should flag an error and/or timeout and close the connection (eventually).

CFindRSP Class

Purpose:

Encapsulate the inner workings of a CFindRSP method (See Chapter 7 of the DICOM v3 draft).  Response objects require that the DICOMCommandObject sent on the Request object be passed in as a parameter.  The response generated will depend on some of the values inside the DICOMCommandObject.

Theory:

Relies upon DICOMObject classes, (i.e., not CCO's).

Interface:

BOOL
Read (











DICOMCommandObject
*, PDU_Service  *, DICOMDataObject
*)


BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.


BOOL
Write (











PDU_Service *, DICOMCommandObject *, UINT16,





DICOMDataObject
*)


BOOL
Write (











PDU_Service *, DICOMCommandObject *, DICOMDataObject
* )


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().  The UINT16 parameter is the value placed in element 0x0000, 0x0900 (Response / Error code).  If you omit this parameter it is generated automatically.  The algorithm for generating it is: if a DICOMDataObject is passed in, then the response code will be 0xff00 (Sub-operations continueing), if the DICOMDataObject is NULL, then the response code will be 0x0000 (successful).

CMoveRQ Class

Purpose:

Encapsulate the inner workings of a CMoveRQ method (See Chapter 7 of the DICOM v3 draft).

Theory:

Relies upon DICOMObject classes, (i.e., not CCO's).

Interface:

BOOL
Read (











DICOMCommandObject *, PDU_Service *, DICOMDataObject *)


BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.  If you pass in a pointer to an allocated DICOMDataObject, and if this is a CMoveRQ message, the data section (i.e., the image) will be stored in the DICOMDataObject pointed to by the parameter.


BOOL
Write ( PDU_Service
*, DICOMDataObject
*, BYTE *)


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().  If you pass in a DICOMDataObject, that object will be sent over the link.  The object will not be returned in a consistent state, (i.e., it will no longer be an image).  You must still delete the DICOMDataObject from the heap.  If you do not pass an object, then you are required to send a DICOMDataObject over the link before further communication can continue.  If you do not, the remote entity should flag an error and/or timeout and close the connection (eventually).  You must supply an ACR-NEMA address on the Write() call.  This address will place in element 0x0000, 0x0600 of the CMoveRQ message.  The remote entity will send the images to this ACR-Nema address.

CMoveRSP Class

Purpose:

Encapsulate the inner workings of a CMoveRSP method (See Chapter 7 of the DICOM v3 draft).  Response objects require that the DICOMCommandObject sent on the Request object be passed in as a parameter.  The response generated will depend on some of the values inside the DICOMCommandObject.

Theory:

Relies upon DICOMObject classes, (i.e., not CCO's).

Interface:

BOOL
Read (











DICOMCommandObject
*, PDU_Service  *, DICOMDataObject
*)


BOOL
Read ( DICOMCommandObject
*)


Read() calls are considered "Checks".  They are considered a boolean check returning TRUE if the message is the associated type, or FALSE if it is not.


BOOL
Write (











PDU_Service *, DICOMCommandObject *, UINT16 ErrorCode,



UINT16 NumberRemaining,  UINT16 NumberComplete,




UINT16 NumberFailed, UINT16 NumberWarning, 





DICOMDataObject
*)


Write() constructs the associated DICOM message and sends it to the connected remote DICOM entity associated with the PDU_Service parameter.  The write call will make a virtual function call to GetUID().  You must supply all UINT16 values.

Creating your own methods, a CEcho example

cecho.hpp

class
CEchoRQ


{


public:



BOOL
Read ( DICOMCommandObject * );



BOOL
Write ( PDU_Service * );



virtual
BOOL
GetUID ( UID & ) = 0;


};

class
CEchoRSP


{


public:



BOOL
Read ( DICOMCommandObject * );



BOOL
Write ( PDU_Service *, DICOMCommandObject *, UINT16 );



BOOL
Write ( PDU_Service *, DICOMCommandObject * );



virtual
BOOL
GetUID ( UID & ) = 0;


};

cecho.C/.cpp

#
include
"dicom.hpp"

/************************* C-Echo *******************************/

BOOL
CEchoRQ :: Read ( DICOMCommandObject *DCO )


{


if (!DCO)



return ( FALSE );


if (DCO->GetUINT16(0x0000, 0x0100)!=0x0030)



return ( FALSE );
// not a C-Echo-RQ


return ( TRUE );


}

BOOL
CEchoRQ :: Write ( PDU_Service *PDU )


{


DICOMCommandObject
DCO;


VR




*vr;


UINT16



Temp;


LE_UINT16


leCommand, leDSType, leMessageID;


UID




uid;


if (!PDU)



return ( FALSE );


if (!GetUID(uid))



return ( FALSE );


vr = new VR (0x0000, 0x0002, uid.GetSize(),




(void*)uid.GetBuffer(1), FALSE );


DCO.Push ( vr );


leCommand = 0x0030;


vr = new VR (0x0000, 0x0100, sizeof(UINT16), (void*)&leCommand,




FALSE);


DCO.Push ( vr );


leDSType = 0x0101;


vr = new VR (0x0000, 0x0800, sizeof(UINT16), (void*)&leDSType,




FALSE);


DCO.Push ( vr );


Temp = uniq16odd();


leMessageID = Temp;


vr = new VR (0x0000, 0x0110, sizeof(UINT16), (void*)&leMessageID,




FALSE);


DCO.Push ( vr );


if (!PDU->Write(&DCO))



return ( FALSE );


return ( TRUE );


}

BOOL
CEchoRSP :: Read ( DICOMCommandObject *DCO )


{


if ( ! DCO )



return ( FALSE );


if (DCO->GetUINT16(0x0000, 0x0100)!=0x8030)



return ( FALSE );


return ( TRUE );


}

BOOL
CEchoRSP :: Write ( PDU_Service *PDU, DICOMCommandObject *DCO,


UINT16
ErrorCode )


{


DICOMCommandObject
DCOR;


LE_UINT16
leCommand, leError;


VR


*vr;


if ( ! PDU )



return ( FALSE );


if ( ! DCO )



return ( FALSE );


while ( vr = DCO->Pop() )



{



switch (vr->Element)




{




case
0x0002:




case
0x0800:





DCOR.Push ( vr );





break;




case
0x0110:





vr->Element = 0x0120;





DCOR.Push ( vr );





break;




default:





delete vr;




}



}


leCommand = 0x8030;


vr = new VR (0x0000, 0x0100, sizeof(UINT16), &leCommand, FALSE );


DCOR.Push ( vr );


leError = ErrorCode;


vr = new VR (0x0000, 0x0900, sizeof(UINT16), &leError, FALSE );


DCOR.Push ( vr );


if (!PDU->Write(&DCOR))



return ( FALSE );


return ( TRUE );


}

BOOL
CEchoRSP :: Write (PDU_Service *PDU, DICOMCommandObject *DCO)


{


return ( Write ( PDU, DCO, 0x0000 ) );
// Write Success


}

Part 6: SOP Classes

Introduction

SOP classes function as the highest level interface between your application and the DICOM TCP/IP transport.  SOP classes use methods from Part 5 (DIMSE-C, etc), and encapsulate an even higher degree of functionality.  To illustrate the difference between methods and SOP classes, consider C-Store.  The DIMSE-C service C-Store object provides a high level CStoreRQ :: Write ( PDU_Service *, DICOMDataObject *) function.  The SOP Class CRStorage provides a similar CRStorage :: Write ( PDU_Service *, DICOMDataObject *).  The SOP class Write() will first send the object using the CStoreRQ object, but then further wait for a CStoreRSP message.  In effect, the program logic of that SOP class exists in the Write() call.

As a programmer you should think of SOP classes as the logic behind sending and receiving DICOM objects.  DIMSE-C services are the methods used to actually send them.

Included are four fundamental types of SOP classes:


Verification




1.2.840.10008.1.1


StandardStorage



Abstract Base Classtc "StandardStorage



Abstract Base Class" \l 2


CRStorage



1.2.840.10008.5.1.4.1.1.1



CTStorage



1.2.840.10008.5.1.4.1.1.2



USMultiframeStorage


1.2.840.10008.5.1.4.1.1.3



MRStorage



1.2.840.10008.5.1.4.1.1.4



NMStorage



1.2.840.10008.5.1.4.1.1.5



USStorage



1.2.840.10008.5.1.4.1.1.6



SCStorage



1.2.840.10008.5.1.4.1.1.7



StandaloneOverlayStorage

1.2.840.10008.5.1.4.1.1.8



StandaloneCurveStorage

1.2.840.10008.5.1.4.1.1.9



StandaloneModalityLUT

1.2.840.10008.5.1.4.1.1.10



StandaloneVOILUT


1.2.840.10008.5.1.4.1.1.11



GEMRStorage


1.2.840.113619.4.2



GECTStorage



1.2.840.113619.4.3


StandardQuery



Abstract Base Class



PatientRootQuery


1.2.840.10008.5.1.4.1.2.1.1



StudyRootQuery


1.2.840.10008.5.1.4.1.2.2.1



PatientStudyOnlyQuery

1.2.840.10008.5.1.4.1.2.3.1


StandardRetrieve



Abstract Base Class



PatientRootRetrieve


1.2.840.10008.5.1.4.1.2.1.2



StudyRootRetrieve


1.2.840.10008.5.1.4.1.2.2.2



PatientStudyOnlyRetrieve

1.2.840.10008.5.1.4.1.2.3.2

Samples at the end of this section document show how the Verification SOP class is implemented.  You should refer to this in modalling the creation of your own SOP classes.

Verification
1.2.840.10008.1.1

Purpose:

Encapsulates the entire Verification class including SCU and SCP roles.

Theory:

A derived class from CEcho-RQ and CEcho-RSP.

Interface:

BOOL

Read ( PDU_Service *, DICOMCommandObject * )


If the DICOMCommandObject is a CEchoRQ message, then a succesful C-Echo-RSP message is generated and sent over the PDU_Service Link.  A TRUE will be returned only if the DICOMCommandObject was a CEchoRQ, and the response was successfully sent.  In both cases the DICOMCommandObject will be altered, but not deleted from the free store.


BOOL

Write ( PDU_Service * )


Send a C-Echo-RQ over a connected PDU_Service object, and wait for a C-Echo-RSP.  If no C-Echo-RSP was sent, or the link was not valid, a FALSE will be returned, otherwise a TRUE.

StandardStorage
Abstract Base Class

CRStorage 1.2.840.10008.5.1.4.1.1.1

CTStorage 1.2.840.10008.5.1.4.1.1.2

USMultiframeStorage 1.2.840.10008.5.1.4.1.1.3

MRStorage 1.2.840.10008.5.1.4.1.1.4

NMStorage 1.2.840.10008.5.1.4.1.1.5

USStorage 1.2.840.10008.5.1.4.1.1.6

SCStorage 1.2.840.10008.5.1.4.1.1.7

StandaloneOverlayStorage 1.2.840.10008.5.1.4.1.1.8

StandaloneCurveStorage 1.2.840.10008.5.1.4.1.1.9

StandaloneModalityLUT 1.2.840.10008.5.1.4.1.1.10

StandaloneVOILUT 1.2.840.10008.5.1.4.1.1.11

GEMRStorage 1.2.840.113619.4.2

GECTStorage 1.2.840.113619.4.3

Purpose:

Encapsulates the entire SSC (Storage Service Class) class including SCU and SCP roles.

Theory:

A derived class from CStoreRQ and CStoreRSP.

Interface:

BOOL

Read (



PDU_Service *,



DICOMCommandObject *,



DICOMDataObject * )


If the DICOMCommandObject is a CStoreRQ message, then a succesful CStoreRSP message is generated and sent over the PDU_Service Link, and a DICOMDataObject is read from the link.  A TRUE will be returned only if the DICOMCommandObject was a CStoreRQ, the DICOMDataObject was read, and the response was successfully sent.  In both cases the DICOMCommandObject will be altered, but not deleted from the free store.


BOOL

Write ( PDU_Service *, DICOMDataObject * )


Send a CStoreRQ over a connected PDU_Service object, and send the DICOMDataObject.  Wait for a CStoreRSP.  If no CStoreRSP was sent, or the link was not valid, a FALSE will be returned, otherwise a TRUE.  A TRUE indicates the remote entity sent the CStoreRSP, and the status code was 0x0000 (success).


virtual
UINT16
CheckObject(DICOMDataObject
*) TC "virtual
UINT16
CheckObject(DICOMDataObject
*)" \f C \l "2" 

This function will be called before a call is made to CStoreRSP.  The 0x0900 field of the C-Store-Response message will contain the value returned from this function.  You should overload this function for the following reasons:


To save an object to disk/database before the C-Store-RSP is generated.


To check the validity of the particular IOD.

StandardQuery Abstract Base Class

PatientRootQuery 1.2.840.10008.5.1.4.1.2.1.1

StudyRootQuery 1.2.840.10008.5.1.4.1.2.2.1

PatientStudyOnlyQuery 1.2.840.10008.5.1.4.1.2.3.1

Purpose:

Encapsulates the entire Query Class including SCU and SCP roles.

Theory:

A derived class from CFindRQ and CFindRSP.

Interface:

BOOL

Read ( PDU_Service *, DICOMCommandObject * )


This function call checks the DICOMCommandObject.  If it is a CFindRQ, then the Read() call will call the pure virtual function SearchOn() with a DICOMDataObject.  Further a CFindRSP will be generated for each object returned from the SearchOn().


BOOL

Write ( PDU_Service *, DICOMDataObject * )


Write sends a CFindRQ message over the connected PDU_Service object.  For each CFindRSP is called to CallBack() will be issued.  Before any CFindRSP is sent a call to CallBack(Valid, NULL) will be issued.  For each CFindRSP a call to CallBack ( Valid, Valid ) will be issued.  After the final CFindRSP a call to CallBack(NULL, Valid) will be issued.


virtual
BOOL
SearchOn (



DICOMDataObject *,



Array < DICOMDataObject * > *)


A pure virtual function which you must implement.  This call is issued on incoming CFindRQ messages from remote application entities.  You should perform any database queries here and add to the array pointed to by the parameter.  (Note: Do not allocate an array, use the one pre-allocated within the StandardQuery class.)  The StandardQuery class will handle de-allocate of the DICOMDataObjects.


virtual
BOOL
CallBack (DICOMCommandObject *,DICOMDataObjct *)


A callback routine.  Your derived class must overload this function.  You are not required to do anything.  Normally you would update some display here.

StandardRetrieve Abstract Base Class

PatientRootRetrieve 1.2.840.10008.5.1.4.1.2.1.2

StudyRootRetrieve 1.2.840.10008.5.1.4.1.2.2.2

PatientStudyOnlyRetrieve 1.2.840.10008.5.1.4.1.2.3.2

Purpose:

Encapsulates the entire Retrieve Class including SCU and SCP roles.

Theory:

A derived class from CMoveRQ and CMoveRSP.

Interface:

BOOL

Read ( PDU_Service *, DICOMCommandObject * )


This function call checks the DICOMCommandObject.  If it is a CMoveRQ, then the Read() call will call the pure virtual function SearchOn() with a DICOMDataObject.  Further a CMoveRSP will be generated for each object returned from the SearchOn().


BOOL

Write ( PDU_Service *, DICOMDataObject * )


Write sends a CMoveRQ message over the connected PDU_Service object.  For each CMoveRSP is call to CallBack() will be issued.  Before any CMoveRSP is sent a call to CallBack(Valid, NULL) will be issued.  For each CMoveRSP a call to CallBack ( Valid, Valid ) will be issued.  After the final CFindRSP a call to CallBack(NULL, Valid) will be issued.


virtual
BOOL
SearchOn (



DICOMDataObject *,



Array < DICOMDataObject * > *)


A pure virtual function which you must implement.  This call is issued on incoming CMoveRQ messages from remote application entities.  You should perform any database queries here and add to the array pointed to by the parameter.  (Note: Do not allocate an array, use the one pre-allocated within the StandardRetrieve class.)  The StandardRetrieve class will handle de-allocate of the DICOMDataObjects.


virtual
BOOL
CallBack ( DICOMCommandObject *, DICOMDataObjct *)


A callback routine.  Your derived class must overload this function.  You are not required to do anything.  Normally you would update some display here.


virtual
BOOL
RetrieveOn (



DICOMDataObject
*,



DICOMDataObject
**,



StandardStorage **)


This call will be passed in a DICOMDataObject (returned from a SearchOn()).  You should locate the image in your database, bring it into memory, load it into the result-parameter DICOMDataObject **, and further set a value-result parameter to the correct SSC SOP Service Class for that image type, (i.e., if the image was a CT scan, then you should make the pointer pointed to by the StandardStorage pointer, point to a CTStorage class).


virtual
BOOL
QualifyOn (



BYTE
*RemoteACRNema,



BYTE
*MyACRNema,



BYTE
*RemoteIPAddress,



BYTE
*RemotePortAddress )


During a Read() call, after a SearchOn() but before a RetrieveOn, this pure virtual function will be called.  You must implement this function.  Typically you would look up the RemoteACRNema address, and then copy the IP address (dotted-quad or DNS name) and port address to the strings pointed to by the parameters.  You should also set your ACR-Nema address.  This address will be used in the outgoing CStoreRQ requests generated from the incoming CMoveRQ request.

Creating your own SOP Classes, a Verification example

verify.hpp

// Verification SOP Service Class

class
Verification
:


public
CEchoRQ,


public
CEchoRSP


{


public:



BOOL
GetUID ( UID & );


public:



BOOL
Read ( PDU_Service *, DICOMCommandObject * );



BOOL
Write ( PDU_Service * );


};

verify.C/.cpp

#
include
"dicom.hpp"

BOOL
Verification :: GetUID ( UID &uid )


{


uid.Set("1.2.840.10008.1.1");


return ( TRUE );


}

BOOL
Verification :: Read ( PDU_Service *PDU, DICOMCommandObject *DCO)


{


VR
*vr;


UID
MyUID, uid;


GetUID(MyUID);
// always try and use GetUID to obtain my own uid


if ( ! PDU )



return ( FALSE );


if ( ! DCO )



return ( FALSE );


vr = DCO‑>GetVR ( 0x0000, 0x0002 );


if ( ! vr )



return ( FALSE );


if ( !SetUID(uid, vr) )



return ( FALSE );


if ( MyUID != uid )



return ( FALSE );


if ( CEchoRQ :: Read ( DCO ) )



{



return ( CEchoRSP :: Write ( PDU, DCO ) );



}


if ( CEchoRSP :: Read ( DCO ) )



{



// No worries..



return ( TRUE );



}


return ( FALSE );
// woa.. corrupted message


}

BOOL
Verification :: Write ( PDU_Service *PDU )


{


DICOMCommandObject
DCO;


if ( ! PDU )



return ( FALSE );


if ( ! CEchoRQ :: Write ( PDU ) )



return ( FALSE );


if(!PDU‑>Read ( & DCO ))



return (FALSE);


if ( ! CEchoRSP :: Read ( &DCO ) )



return ( FALSE );


return ( TRUE );


}

Part 7: Low-Level Examples

C-Echo Server Process
BOOL

CEchoServer()


{


PDU_Service



PDU;


DICOMCommandObject

DCO;


DICOMCommandObject

DCOR;


VR




*vr;


LE_UINT16



tuint16;


// PORT is a BYTE string which contains the TCP port number to listen on.


// Most DICOM servers are done on a defacto-standard port 104.  Note that


// that port requires priveledge (ie root) access on UNIX (not on NT).


//


// This call returns TRUE / FALSE.  A FALSE indicates no connection.  No


// connection can result from either a TCP level error (ie bind), or a


// DICOM PDU level error.


//


// Note: This example represents a "toy" server.  A real server should


// multi-thread and take advantage of "driver" sockets and the PDU_Service


// call: Multiplex ( int ).  The third example shows just how to do this.


if(PDU.Listen(PORT))



{



// Since the client started the connection, usually it is up to it



// to send the first command object.



PDU.Read(&DCO);



// Interrogate this object.  This server is rather dumb.  A real



// server would want to more thoroughly investigate the object.



// This loop simply tears open the object, and reconstructs



// a response object from it.



while(vr = DCO.Pop())




{




fprintf(stderr, "Object: (%4.4x, %4.4x), %d Length\n",





vr‑>Group, vr‑>Element, vr‑>Length);




switch(vr‑>Element)





{





case
0x0000:
delete vr; break;





case
0x0002:
DCOR.Push(vr);
break;





case
0x0100:






tuint16 = 0x8030;
// 0x8030






memcpy(vr‑>Data, &tuint16, 2);






DCOR.Push(vr);
break;





case
0x0800:
DCOR.Push(vr);
break;





case
0x0110:






vr‑>Element = 0x0120;






DCOR.Push(vr);
break;





default:






delete vr;





}




}



vr = new VR(0x0000, 0x0900, 0x0002, TRUE);



tuint16 = 0;



memcpy(vr‑>Data, &tuint16, 2);



DCOR.Push(vr);



// Write the response object back over the link



PDU.Write(&DCOR);



// Close the link.  A real server should loop here and wait for



// another DICOMCommandObject (and should close the link on the



// failed Read() call.  See the CMEchoStoreServer example



PDU.Close();



return ( TRUE );



}


return ( FALSE );


}

C-Echo Client Process
BOOL

CEchoClient(BYTE
*ip, BYTE
*port)


{


PDU_Service


PDU;


DICOMCommandObject
DCO;


DICOMCommandObject
DCOR;


UID



uid;


VR



*vr;


LE_UINT16


tuint16, command, datasettype, messageid;


BYTE



SOP[64];


// CleatAbstractSyntaxs() is not required in this case, because


// PDU_Service is a new instance.


PDU.ClearAbstractSyntaxs();


// Set Local / Remote ACR-Nema addresses.  This call is required


// on outgoing connections.


PDU.SetLocalAddress(LOCAL_ACR);


PDU.SetRemoteAddress(REMOTE_ACR);


// Set the application context.  Usually a good idea to use the DICOM


// Application Context as defined in Chapter 5 of the DICOM standard.


uid.Set("1.2.840.10008.3.1.1.1");


PDU.SetApplicationContext(uid);


// Say that we want to connect to the Verification Service Class.


uid.Set("1.2.840.10008.1.1");


PDU.AddAbstractSyntax(uid);


// At this point we are ready to create the TCP/IP link.  PDU.Connect()


// does just that.


if(!PDU.Connect(ip, port))



{



// Some error.  Print out AAssociateRJ data.  Most common print-outs



// are 1,1,3 (indicating usually that the connection was failed



// at the TCP/IP level, or 1,1,7 which means you tried to connect



// to the wrong ACR-Nema address.



fprintf(stderr, "AAssociateRJ: %d, %d, %d\n",




PDU.AAssociateRJ :: Result,




PDU.AAssociateRJ :: Source,




PDU.AAssociateRJ :: Reason);



return ( FALSE );



}


// Connection is setup, now we construct a DICOMCommandObject such that


// it is a C-Echo-RQ packet.


strcpy((char*) SOP, "1.2.840.10008.1.1"); 


vr = new VR (0x0000, 0x0002, strlen((char*)SOP), (void*) SOP, FALSE);


DCO.Push(vr);


command = 0x0030;


vr = new VR (0x0000, 0x0100, 0x0002, &command, FALSE);


DCO.Push(vr);


datasettype = 0x0101;



vr = new VR (0x0000, 0x0800, 0x0002, &datasettype, FALSE);


DCO.Push(vr);


messageid = 1;


vr = new VR (0x0000, 0x0110, 0x0002, &messageid, FALSE);


DCO.Push(vr);


// Write the object over the link.


fprintf(stderr, "Writting CEcho‑RQ %d\n", PDU.Write(&DCO));


fprintf(stderr, "Waiting for CEcho‑RSP\n");


// Read an entire response object from the link.


if(!PDU.Read(&DCOR))



return ( FALSE );
// associate lost


// Dump the response objects' contents.


while(vr = DCOR.Pop())



{



fprintf(stderr, "Object: (%4.4x, %4.4x), %d Length\n",




vr‑>Group, vr‑>Element, vr‑>Length);



delete vr;



}


// Close the link


PDU.Close();


return ( TRUE );


}

C-Find Client
Note: This is a StudyRoot client.  It also only interogates the first level (STUDY) of the SOP class.  Its purpose is to get a list of patients from a modality / PACS and print them out.

BOOL

CFindClient(BYTE
*ip, BYTE
*port)


{


BOOL



quit;


PDU_Service


PDU;


DICOMCommandObject
DCO;


DICOMCommandObject
DCOR;


DICOMDataObject

DDO;


DICOMDataObject

DDOR;


UID



uid;


VR



*vr;


LE_UINT16


tuint16, command, datasettype, messageid, priority;


BYTE



SOP[64];


BYTE



QLevel[16];


BYTE



AppTitle[64];


BYTE



Star[32];


PDU.ClearAbstractSyntaxs();


PDU.SetLocalAddress(LOCAL_ACR);


PDU.SetRemoteAddress(REMOTE_ACR);


uid.Set("1.2.840.10008.3.1.1.1");
// DICOM App


PDU.SetApplicationContext(uid);


uid.Set("1.2.840.10008.5.1.4.1.2.2.1");


PDU.AddAbstractSyntax(uid);


if(!PDU.Connect(ip, port))



{



// Some error.  Print out AAssociateRJ data



fprintf(stderr, "AAssociateRJ: %d, %d, %d\n",




PDU.AAssociateRJ :: Result,




PDU.AAssociateRJ :: Source,




PDU.AAssociateRJ :: Reason);



return ( FALSE );



}


strcpy((char*) SOP, "1.2.840.10008.5.1.4.1.2.2.1"); 


vr = new VR (0x0000, 0x0002, strlen((char*)SOP), (void*) SOP, FALSE);


DCO.Push(vr);


command = 0x0020;


vr = new VR (0x0000, 0x0100, 0x0002, &command, FALSE);


DCO.Push(vr);


priority = 0;
// MEDIUM


vr = new VR (0x0000, 0x0700, 0x0002, &priority, FALSE);


DCO.Push(vr);


datasettype = 0x0102;



vr = new VR (0x0000, 0x0800, 0x0002, &datasettype, FALSE);


DCO.Push(vr);


messageid = 3;


vr = new VR (0x0000, 0x0110, 0x0002, &messageid, FALSE);


DCO.Push(vr);


strcpy((char*) QLevel, "STUDY ");


vr = new VR(0x0008, 0x0052, strlen((char*)QLevel), (void*) QLevel,




FALSE);


DDO.Push(vr);


strcpy((char*) AppTitle, "                ");


vr = new VR(0x0008, 0x0054, 16, (void*)AppTitle, FALSE);


DDO.Push(vr);


strcpy((char*) &Star[0], "*");


vr = new VR(0x0008, 0x0018, 0, FALSE);
DDO.Push(vr);


vr = new VR(0x0020, 0x0013, 0, FALSE);
DDO.Push(vr);


vr = new VR(0x0020, 0x000d, 0, FALSE);
DDO.Push(vr);


vr = new VR(0x0010, 0x0010, 0, FALSE);
DDO.Push(vr);


PDU.Write(&DCO);


PDU.Write(&DDO);


quit = 0;


while(!quit)



{

//

fprintf(stderr, "Waiting for CFind‑RSP");



if(!PDU.Read(&DCOR))




return ( FALSE );
// associate lost



// is this a C‑Find‑RSP ?



if(DCOR.GetUINT16(0x0000, 0x0100)!=0x8020)




{

//


fprintf(stderr, "not a C‑Find‑RSP: %4.4x\n",

//



DCOR.GetUINT16(0x0000, 0x0100));




PDU.Close();




return(FALSE);




}



// is there a data set?



if(DCOR.GetUINT16(0x0000, 0x0800)==0x0101)




{

//


fprintf(stderr, "no data set included\n");




PDU.Close();




return( TRUE );




}



if(DCOR.GetUINT16(0x0000, 0x0900)==0x0000)
// success




{




PDU.Close();




return ( TRUE );




}

//

fprintf(stderr, "Waiting for data section\n");



if(!PDU.Read(&DDOR))




{




PDU.Close();




return(FALSE);




}

// 
figure out what we got in the data section

//

fprintf(stderr, "Data Object:\n");



while(vr = DDOR.Pop())




{




if(vr‑>Group == 0x0000)





{





fprintf(stderr, "Data Object:\n");





DumpVR(vr);





while(vr = DDOR.Pop())






DumpVR(vr);





fprintf(stderr, "Command Object:\n");





while(vr = DCOR.Pop())






DumpVR(vr);





PDU.Close();





return ( TRUE );





}




if(vr‑>Group == 0x0010)





if(vr‑>Element == 0x0010)






DumpVR(vr);

//


fprintf(stderr, "\tObject: (%4.4x, %4.4x), %d Length\n",

//



vr‑>Group, vr‑>Element, vr‑>Length);




}



while(vr = DCOR.Pop())




;



}


PDU.Close();


return ( TRUE );


}

Multi-threaded C-Echo / C-Store server
BOOL

CMEchoStoreServerProc(int
socketfd)


{


PDU_Service


PDU;


DICOMCommandObject
DCO;


DICOMCommandObject
*DCORPtr;


DICOMDataObject

*DDOPtr;


DICOMCommandObject
DCOR;


VR



*vr;


LE_UINT16


tuint16;


LE_UINT16


Command, MId, MRId, DSet, E200, E300, E700,E900;


// NOTE: PDU.Multiplex(filedes).  This call is saying, here's a just


// connected socket, now go through the regular PDU association, and


// return to me a connected DICOM link.


if(PDU.Multiplex(socketfd))



{



while(TRUE)




{




if(!PDU.Read(&DCO))





return ( FALSE );




switch ( DCO.GetUINT16 ( 0x0000, 0x0100 ) )





{





case
0x0030:
// C-Echo






while(vr = DCO.Pop())







{







switch(vr‑>Element)








{








case
0x0000:
delete vr; break;








case
0x0002:
DCOR.Push(vr);











break;








case
0x0100:









tuint16 = 0x8030;
// 0x8030









memcpy(vr‑>Data, &tuint16, 2);









DCOR.Push(vr);









break;








case
0x0800:
DCOR.Push(vr);











break;








case
0x0110:









vr‑>Element = 0x0120;









DCOR.Push(vr);
break;








default:









delete vr;








}







}






vr = new VR(0x0000, 0x0900, 0x0002, TRUE);






tuint16 = 0;






memcpy(vr‑>Data, &tuint16, 2);






DCOR.Push(vr);






PDU.Write(&DCOR);






break;





case
0x0001:

// CStore






DDOPtr = new DICOMDataObject;






if(!DDOPtr)







return(FALSE);






if(!PDU.Read(DDOPtr))







return ( FALSE );






// DDOPtr now contains the Image.  Since this






// is an example, just delete it.






delete DDOPtr;






DCORPtr = new DICOMCommandObject;






if(!DCORPtr)







return ( FALSE );






Command = 0x8001;






MId = DCO.GetUINT16(0x0000, 0x0110);






MRId = MId;






DSet = 0x0101;






E200 = DCO.GetUINT16(0x0000, 0x0200);






E300 = DCO.GetUINT16(0x0000, 0x0300);






E700 = 0;






E900 = 0;






vr = new VR(0x0000, 0x0100, 2, &Command,







 FALSE);
DCORPtr‑>Push(vr);






vr = new VR(0x0000, 0x0110, 2, &MId,







 FALSE);
DCORPtr‑>Push(vr);






vr = new VR(0x0000, 0x0120, 2, &MRId,







 FALSE);
DCORPtr‑>Push(vr);






vr = new VR(0x0000, 0x0200, 2, &E200,







 FALSE);
DCORPtr‑>Push(vr);






vr = new VR(0x0000, 0x0300, 2, &E300,







 FALSE);
DCORPtr‑>Push(vr);






vr = new VR(0x0000, 0x0700, 2, &E700,







 FALSE);
DCORPtr‑>Push(vr);






vr = new VR(0x0000, 0x0800, 2, &DSet,







 FALSE);
DCORPtr‑>Push(vr);






vr = new VR(0x0000, 0x0900, 2, &E900,







 FALSE);
DCORPtr‑>Push(vr);






while(vr = DCO.Pop())







;






PDU.Write(DCORPtr);






break;





}




}



}


PDU.Close();


return ( TRUE );


}

// Driver routine for Multiplexed Socket I/O (re‑use‑address type).  Note,

// in a real server the child should be forked off.

BOOL

CMEchoStoreServer()


{


Socket
MSocket;


if(!MSocket.Listen((char*)PORT))



return ( FALSE );


while(MSocket.Accept())



{



// A Server must be tied down to a particular OS here.  In NT you



// can use CreateThread to create the server within the processes



// own addresses space.  On Solaris you can also create a thread.



// On POSIX you need to fork(), and correctly handle file



// descriptors.



CMEchoStoreServerProc(MSocket.Socketfd);



MSocket.Socketfd = 0;



MSocket.Connected = FALSE;



}


return ( FALSE );
// should never return except on error


}

Part 8: High-Level Examples

DriverApp Class

#
include
"dicom.hpp"

// Base class for "driven" servers.  In a real server this class

// should implement the fork() for CreateThread()

class
DriverApp


{


protected:



virtual
BOOL
ServerChild ( int ) = 0;


public:



BOOL


Server ( BYTE * );


};

// This Server is a system-independent (non-multitasking) driver.

BOOL
DriverApp
::
Server ( BYTE
*port )


{


Socket
MSocket;


if (!MSocket.Listen ((char*) port ))



return ( FALSE );
// failed on the bind


while (MSocket.Accept() )



{



// Should fork() or CreateThread here.



ServerChild ( MSocket.Socketfd );



MSocket.Socketfd = 0;



MSocket.Connected = FALSE;



}


return ( FALSE );


}

Purpose:

All high-level examples should share a common server “driver” class.  This class manages the TCP/IP socket, and forks off (in a system dependent way) the associated Server-Child proc.  This system’s dependentness, and the re-usable logic, makes using a DriverApp type class useful.

VerificationApp Class

#
include
“dicom.hpp”

class
VerificationApp
:


public

DriverApp


{



Verification
SOPVerification;


private:



BOOL
ServerChild ( int );


public:



BOOL
Client ( BYTE *, BYTE *, BYTE
*, BYTE
* );


};

BOOL
VerificationApp
::
ServerChild (int
socketfd )


{


PDU_Service


PDU;


DICOMCommandObject
DCO;


if(!PDU.Multiplex ( socketfd ))



return ( FALSE );


while(PDU.Read(&DCO))



{



if(!SOPVerification.Read(&PDU, &DCO))




{




PDU.Close();
// something bad




return ( FALSE );




}



DCO.Reset();



}


return ( TRUE );


}

BOOL
VerificationApp
::
Client (



BYTE
*LocalACRNema,



BYTE
*RemoteACRNema,



BYTE 
*ip,



BYTE
*port )


{


UID


uid, Appuid("1.2.840.10008.3.1.1.1");


PDU_Service
PDU;


PDU.SetApplicationContext(Appuid);


SOPVerification.GetUID(uid);


PDU.AddAbstractSyntax(uid);


PDU.SetLocalAddress(LocalACRNema);


PDU.SetRemoteAddress(RemoteACRNema);


if(!PDU.Connect(ip, port))



return ( FALSE );


return(SOPVerification.Write ( & PDU ));


}

CTStorageApp Class

class
CTStorageApp
:


public
DriverApp


{



CTStorage


SOPCTStorage;



MRStorage


SOPMRStorage;



UnknownStorage

SOPUnknownStorage;// last thing to accept



Verification

SOPVerification;



MyStudyRootQueryRetrieve
SOPMyStudyRootQueryRetrieve;


private:



BOOL
ServerChild ( int );


public:



BOOL
Client ( 
BYTE *,








BYTE *,








BYTE *,








BYTE *,








DICOMDataObject *);


};

BOOL
CTStorageApp
::
ServerChild (int
socketfd )


{


PDU_Service


PDU;


DICOMCommandObject
DCO;


DICOMDataObject

*DDO;


VR



*vr;


UINT16


val;


char



name [ 65 ];


if(!PDU.Multiplex ( socketfd ))



return ( FALSE );


while(TRUE)



{



DCO.Reset();



if (!PDU.Read(&DCO))




break;



val = DCO.GetUINT16(0x0000, 0x0100);



fprintf(stdout, "Server, command = %4.4x\n", val);




if (SOPVerification.Read(&PDU, &DCO))




{




fprintf(stdout, "Successful C-Echo\n");




continue;




}



if(SOPMyStudyRootQueryRetrieve.StudyRootQuery :: Read(&PDU, &DCO))




{




fprintf(stdout, "Successful C-Find\n");




continue;




}



if(SOPMyStudyRootQueryRetrieve.StudyRootRetrieve :: Read(&PDU,




&DCO))




{




fprintf(stdout, "Successful C-Move\n");




continue;




}



DDO = new DICOMDataObject;



if(SOPCTStorage.Read(&PDU, &DCO, DDO))




{




// DDO contains object (image) read from C-Store




vr = DDO->GetVR(0x0010, 0x0010);




if ( vr )





{





memset((void*)name, 0, 64);





memcpy((void*)name, vr->Data, vr->Length);





fprintf (stderr, "Successful C-Store for %s\n", name);





}




else





fprintf (stderr, "Successful C-Store\n");




delete DDO;




continue;




}



if(SOPMRStorage.Read(&PDU, &DCO, DDO))




{




fprintf(stderr, "Successful C-Store (MR)\n");




// DDO now contains the image




delete DDO;




continue;




}



if(SOPUnknownStorage.Read(&PDU, &DCO, DDO))




{




fprintf(stderr, "Successful C-Store (unknown class)\n");




// DDO now contains the image




delete DDO;




continue;




}



delete DDO;



PDU.Close();



return ( FALSE );



}


return ( TRUE );


}

BOOL
CTStorageApp
::
Client (



BYTE
*LocalACRNema,



BYTE
*RemoteACRNema,



BYTE 
*ip,



BYTE
*port,



DICOMDataObject
*DDO )


{


UID


uid, Appuid("1.2.840.10008.3.1.1.1");


PDU_Service
PDU;


PDU.SetApplicationContext(Appuid);


SOPCTStorage.GetUID(uid);


PDU.AddAbstractSyntax(uid);


PDU.SetLocalAddress(LocalACRNema);


PDU.SetRemoteAddress(RemoteACRNema);


if(!PDU.Connect(ip, port))



return ( FALSE );


return(SOPCTStorage.Write ( & PDU, DDO ));


}

MyStudyRootRetrieve
// NOTE: In a correct ARM compiler (like Microsoft, or to some extent

// gcc v2.6.0 you can derive MyStudyRootQueryRetrieve directly.

// however gcc v2.5.8 (beta) and v2.5.4 do not compile this way.

// The example here compiles on both gcc v2.6.0 and early v2.5.4/8.

class
MyStudyRootRetrieve
:


public
StudyRootRetrieve


{


public:



CRStorage
SOPCRStorage;



CTStorage
SOPCTStorage;



MRStorage
SOPMRStorage;


public:



BOOL
SearchOn
(DICOMDataObject
*DDO,






Array < DICOMDataObject *> *ADDO);



BOOL
CallBack
(DICOMCommandObject
*DCO,








DICOMDataObject
*DDO);



BOOL
QualifyOn
(BYTE *, BYTE *, BYTE *, BYTE *);



BOOL
RetrieveOn
(
DICOMDataObject *,






DICOMDataObject **,






StandardStorage
** );


};

class
MyStudyRootQueryRetrieve
:


public
StudyRootQuery,


public
MyStudyRootRetrieve


{


BOOL
SearchOn
(DICOMDataObject
*DDO,



Array < DICOMDataObject *> *ADDO)



{ return ( MyStudyRootRetrieve :: SearchOn ( DDO, ADDO ) ); };


BOOL
CallBack
(DICOMCommandObject
*DCO,





DICOMDataObject
*DDO)



{ return ( MyStudyRootRetrieve :: CallBack ( DCO, DDO ) ); };


};

// Call back is not required to do anything, but return TRUE, and

// not destroy/alter the DICOMObject’s passed in.  The most simple

// CallBack() routine is a return ( TRUE ); statement.

BOOL
MyStudyRootRetrieve
::
CallBack (


DICOMCommandObject
*DCO,


DICOMDataObject

*DDO )


{


VR
*vr;


char
Name[100];


if (! DCO )



return ( TRUE );
// Initial call back (start)


if (! DDO )



return ( TRUE );
// final call back (end)


memset((void*) Name, 0, 100);


vr = DDO->GetVR(0x0010, 0x0010);


if(!vr)



return ( FALSE );


memcpy((void*) Name, vr->Data, (int)vr->Length);


fprintf(stdout, "Patient : %s\n", Name);


return ( TRUE );


}

// SearchOn presents the hook into your database.  Here you should

// perform your SQL quary, or link to any other database routines.

BOOL
MyStudyRootRetrieve
::
SearchOn (


DICOMDataObject



*DDO,


Array < DICOMDataObject
*>
*ADDO)


{


// generate 5 dummy patients


UINT
Index;


DICOMDataObject
*DDO1;


VR

*vr;


char
Name [ 64 ];


char
SOPClass[64] = "1.2.840.10008.5.1.4.1.1.2";


Index = 0;


while ( Index < 5 )



{



sprintf(Name, "PatientName#%d", Index+1);



++Index;



vr = new VR(0x0010, 0x0010, strlen(Name)+1, TRUE);



strcpy((char*)vr->Data, Name);



DDO1 = new DICOMDataObject;



DDO1->Push ( vr );



vr = new VR (0x0008, 0x0016, strlen ( SOPClass ),




(void *) SOPClass, FALSE);



DDO1->Push ( vr );



ADDO->Add ( DDO1 );



}


return ( TRUE );



}

// Retrieve on is like SearchOn in that it is the hook into

// the database.  However, this time you should actually retrieve

// the entire image, and not just the attributes asked for.

BOOL
MyStudyRootRetrieve
::
RetrieveOn (


DICOMDataObject
*DDO,


DICOMDataObject
**pRDDO,


StandardStorage
**SOPClass)


{


VR
*vr, *vr1;


// A Real RetrieveOn should check the class of the image, and


// set the SOPClass to that.


(*SOPClass) = &SOPCTStorage;


(*pRDDO ) = new DICOMDataObject;


// A Real RetrieveOn should actually get the image..


vr1 = DDO->GetVR(0x0010, 0x0010);


if(!vr1)



vr = new VR ( 0x0010, 0x0010, 0, FALSE );


else



{



vr = new VR ( 0x0010, 0x0010, vr1->Length, TRUE);



memcpy(vr->Data, vr1->Data, vr1->Length);



}


(*pRDDO)->Push ( vr );


return ( TRUE );


}

// QualifyOn is a way of looking up known ACR-NEMA addresses.

// In most cases you should check whatever table you have

// set up for storing other DICOM entities, and return the

// parameters.  The first parameter is passed in, the final

// three on actually value-result,(i.e., you fill them in).

BOOL
MyStudyRootRetrieve
::
QualifyOn (


BYTE
*ACRNema,


BYTE
*MyACRNema,


BYTE
*RemoteIP,


BYTE
*RemotePort)


{


fprintf(stderr, "Search for ACR-Nema: %s\n", (char*)ACRNema);


strcpy ((char*) MyACRNema, "none");


strcpy ((char*) RemoteIP, "rocky.ucdavis.edu");


strcpy ((char*) RemotePort, "10004");


return ( TRUE );


}

CFindExampleApp
class
CFindExampleApp



{



MyStudyRootQueryRetrieve

SOPMyStudyRootQueryRetrieve;


public:



BOOL
Client ( BYTE
*, BYTE
*, BYTE
*, BYTE
* );


};

BOOL
CFindExampleApp
::
Client (



BYTE
*LocalACRNema,



BYTE
*RemoteACRNema,



BYTE 
*ip,



BYTE
*port)


{


UID


uid, Appuid("1.2.840.10008.3.1.1.1");


PDU_Service
PDU;


DICOMDataObject
QDDO;


VR


*vr;


char

*QLevel = "STUDY ";


PDU.SetApplicationContext(Appuid);


SOPMyStudyRootQueryRetrieve.StudyRootQuery :: GetUID(uid);


PDU.AddAbstractSyntax(uid);


PDU.SetLocalAddress(LocalACRNema);


PDU.SetRemoteAddress(RemoteACRNema);


if(!PDU.Connect(ip, port))



return ( FALSE );


vr = new VR(0x0008, 0x0052, 6, (void*)QLevel, FALSE);


QDDO.Push ( vr );


vr = new VR(0x0008, 0x0018, 0, FALSE);
QDDO.Push ( vr );


vr = new VR(0x0020, 0x0013, 0, FALSE);
QDDO.Push ( vr );


vr = new VR(0x0020, 0x000d, 0, FALSE);
QDDO.Push ( vr );


vr = new VR(0x0010, 0x0010, 0, FALSE);
QDDO.Push ( vr );


return(


  SOPMyStudyRootQueryRetrieve.StudyRootQuery :: Write ( & PDU, &QDDO ));


}

CMoveExampleApp

class
CMoveExampleApp



{



MyStudyRootQueryRetrieve

SOPMyStudyRootQueryRetrieve;


public:



BOOL
Client ( BYTE
*, BYTE
*, BYTE
*, BYTE
* );


};

BOOL
CMoveExampleApp
::
Client (



BYTE
*LocalACRNema,



BYTE
*RemoteACRNema,



BYTE 
*ip,



BYTE
*port)


{


UID


uid, Appuid("1.2.840.10008.3.1.1.1");


PDU_Service
PDU;


DICOMDataObject
QDDO;


VR


*vr;


char

*QLevel = "STUDY ";


PDU.SetApplicationContext(Appuid);


SOPMyStudyRootQueryRetrieve.StudyRootRetrieve :: GetUID(uid);


PDU.AddAbstractSyntax(uid);


PDU.SetLocalAddress(LocalACRNema);


PDU.SetRemoteAddress(RemoteACRNema);


if(!PDU.Connect(ip, port))



return ( FALSE );


vr = new VR(0x0008, 0x0052, 6, (void*)QLevel, FALSE);


QDDO.Push ( vr );


vr = new VR(0x0008, 0x0018, 0, FALSE);
QDDO.Push ( vr );


vr = new VR(0x0020, 0x0013, 0, FALSE);
QDDO.Push ( vr );


vr = new VR(0x0020, 0x000d, 0, FALSE);
QDDO.Push ( vr );


vr = new VR(0x0010, 0x0010, 0, FALSE);
QDDO.Push ( vr );


return(


  SOPMyStudyRootQueryRetrieve.StudyRootRetrieve :: Write ( & PDU,



&QDDO, (BYTE*) "none" ));


}

Composite Object Example

#
include
"dicom.hpp"

#
include
"iod.hpp"

// Overloadable Dump routine

BOOL

Dump (


CO_PatientModule
&PatientModule)


{


char
s[128];


PatientModule.PatientsName.VMGet(0, s);


printf ("Patient's Name := %s\n", s);s[0]='\0';


PatientModule.PatientID.VMGet(0, s);


printf ("Patient ID := %s\n", s);s[0]='\0';


PatientModule.PatientsBirthDate.VMGet(0, s);


printf ("Patients Birth Date := %s\n", s);s[0]='\0';


PatientModule.PatientsSex.VMGet(0, s);


printf ("Patients Sex := %s\n", s);s[0]='\0';


return ( TRUE );



}

int

main (


int

argc,


char
*argv[])


{


int




valid_argc;


PDU_Service


PDU;


valid_argc = 1;



while ( valid_argc < argc )



{



DICOMDataObject *DDO = PDU.LoadDICOMDataObject (argv[valid_argc]);



if ( ! DDO )




{




fprintf (stderr, "Could not open IOD File %s\n",





argv[valid_argc]);




}



else




{




CTImageIODModule
CTImage;




CTImage.Set(DDO);
delete DDO;




Dump(CTImage.PatientModule);




}




++valid_argc;



}


return ( 0 );



}

07/31/1995 DICOM Network Transport Library

UCDMC PACS Research and Development Lab.


